
 TA Document 1998003

AV/C Digital Interface Command
Set
General Specification

Version 3.0
April 15, 1998

Sponsored by:
Audio/Video Working Group of the 1394 Trade Association

Approved for Release by:
This document has been approved for release by the 1394 Trade Association Board of Directors

Abstract: This specification defines a command set for consumer and professional
audio/video equipment over IEEE Std. 1394-1995. The command set makes use of the
Function Control Protocol (FCP) defined by IEC 61883, Digital Interface for Consumer
Electronic Audio/Video Equipment, for the transport of audio/video command requests and
responses. The audio/video devices are implemented as a common unit architecture within
IEEE Std. 1394-1995.

Keywords: Audio, Video, 1394, Digital, Interface

1394 Trade Association
3925 W. Braker Lane, Austin, TX 78759 USA
http://www.1394TA.org

Copyright  1996-1997 by the 1394 Trade Association. Permission is granted to members of the 1394 Trade Association to reproduce this
document for their own use or the use of other 1394 Trade Association members only, provided this notice is included. All other rights reserved.
Duplication for sale, or for commercial or for-profit use is strictly prohibited without the prior written consent of the 1394 Trade Association.

AV/C Digital Interface Command Set General Specification, Rev. 3.0 April 15, 1998, 1998003

Page ii Copyright  1996-1998, 1394 Trade Association. All rights reserved.

1394 Trade Association Specifications are developed within Working Groups of the 1394 Trade
Association, a non-profit industry association devoted to the promotion of and growth of the market for IEEE
1394-compliant products. Participants in working groups serve voluntarily and without compensation from
the Trade Association. Most participants represent member organizations of the 1394 Trade Association.
The specifications developed within the working groups represent a consensus of the expertise represented
by the participants.

Use of a 1394 Trade Association Specification is wholly voluntary. The existence of a 1394 Trade
Association Specification is not meant to imply that there are not other ways to produce, test, measure,
purchase, market or provide other goods and services related to the scope of the 1394 Trade Association
Specification. Furthermore, the viewpoint expressed at the time a specification is approved and issued is
subject to change brought about through developments in the state of the art and comments received from
users of the specification. Users are cautioned to check to determine that they have the latest revision of
any 1394 Trade Association Specification.

Comments for revision of 1394 Trade Association Specifications are welcome from any interested party,
regardless of membership affiliation with the 1394 Trade Association. Suggestions for changes in
documents should be in the form of a proposed change of text, together with appropriate supporting
comments.

Interpretations: Occasionally, questions may arise about the meaning of specifications in relationship to
specific applications. When the need for interpretations is brought to the attention of the 1394 Trade
Association, the Association will initiate action to prepare appropriate responses.

Comments on specifications and requests for interpretations should be addressed to:

Editor, 1394 Trade Association
3925 W. Braker Lane
Austin, TX 78759
USA

1394 Trade Association Specifications are adopted by the 1394 Trade Association without
regard to patents which may exist on articles, materials or processes, or to other
proprietary intellectual property which may exist within a specification. Adoption of a
specification by the 1394 Trade Association does not assume any liability to any patent
owner or any obligation whatsoever to those parties who rely on the specification
documents. Readers of this document are advised to make an independent determination
regarding the existence of intellectual property rights which may be infringed by
conformance to this specification.

April 15, 1998, 1998003 AV/C Digital Interface Command Set General Specification, Rev. 3.0

Copyright  1996-1998, 1394 Trade Association. All rights reserved. Page iii

Table of Contents

1. REFERENCES...2

2. CHANGES FROM PREVIOUS VERSION...3

3. DEFINITIONS AND ABBREVIATIONS..4
3.1 Conformance glossary..4
3.2 Technical glossary..4

4. FUNCTION CONTROL PROTOCOL (INFORMATIVE)..6

5. AV/C FRAMES...7
5.1 AV/C command frame...7
5.2 AV/C response frame...7
5.3 AV/C frame components..8

5.3.1 Command type (ctype)..8
5.3.2 Response code (response)..8
5.3.3 AV/C address (subunit_type, subunit_ID)...9
5.3.4 Operation (opcode)...11
5.3.5 Operands..11
5.3.6 Subunit classification process...11

6. AV/C OPERATIONS..13

7. AV/C COMMANDS...16
7.1 Support levels..16
7.2 Control commands...16
7.3 Status commands...17
7.4 SPECIFIC INQUIRY commands..18
7.5 Notify commands...18
7.6 GENERAL INQUIRY commands..19

8. AV/C DESCRIPTOR MECHANISM..20
8.1 The General Subunit Identifier Descriptor..22
8.2 Object Lists...24
8.3 Object Entries..26
8.4 Object References..29

8.4.1 Object Position Reference..30
8.4.2 Object ID Reference..30

8.5 Parsing and Navigating the General AV/C Descriptor Structures (Informative)....................30
8.5.1 Endian-ness..30
8.5.2 Variable Length Fields Within Data Structures..30
8.5.3 The Length of Object Entry Descriptors...32
8.5.4 Extended Data Structures...32

8.6 Rules for Reserved Fields...34

9. UNIT COMMANDS..35
9.1 CHANNEL USAGE command...35
9.2 CONNECT command...37
9.3 CONNECT AV command...40
9.4 CONNECTIONS command...42
9.5 DIGITAL INPUT command...43
9.6 DIGITAL OUTPUT command...43
9.7 DISCONNECT command..43
9.8 DISCONNECT AV command..44

AV/C Digital Interface Command Set General Specification, Rev. 3.0 April 15, 1998, 1998003

Page iv Copyright  1996-1998, 1394 Trade Association. All rights reserved.

9.9 INPUT PLUG SIGNAL FORMAT command...44
9.10 OUTPUT PLUG SIGNAL FORMAT command...45
9.11 SUBUNIT INFO command..46
9.12 UNIT INFO command..47

10. COMMON UNIT AND SUBUNIT COMMANDS...49
10.1 OPEN DESCRIPTOR command..49

10.1.1 Subunit Identifier...50
10.1.2 Object List...50
10.1.3 Object Entry...51
10.1.4 Descriptor Access Support...52
10.1.5 The OPEN DESCRIPTOR Status Command...53

10.2 READ DESCRIPTOR command..55
10.3 WRITE DESCRIPTOR command..56

10.3.1 Partial Replace Operations...59
10.3.2 WRITE DESCRIPTOR Status..60

10.4 SEARCH DESCRIPTOR command..61
10.4.1 type_specific_info for the search_in operand..66
10.4.2 type_specific_info for the start_point operand..69
10.4.3 Examples of the SEARCH DESCRIPTOR Command (Informative)..........................71

10.5 OBJECT NUMBER SELECT command...73
10.5.1 Subfunction Implementation Rules..75
10.5.2 The General ons_selection_specification Structure..75
10.5.3 The “Don’t Care” Specification..76
10.5.4 Object Selection Examples..78
10.5.5 Object Selection Semantics..80
10.5.6 The OBJECT NUMBER SELECT Status Command..81

10.6 POWER command...82
10.7 RESERVE command..82
10.8 PLUG INFO command..84
10.9 VENDOR-DEPENDENT commands...85

A. AV/C COMMANDS IN NUMERICAL ORDER (NORMATIVE).....................................87

B. UNRESOLVED ISSUES (INFORMATIVE)..88

List of Figures

FIGURE 4-1 — FCP FRAME WITHIN A SERIAL BUS PACKET ...6
FIGURE 5-1 — AV/C COMMAND FRAME ..7
FIGURE 5-2 — AV/C RESPONSE FRAME ...7
FIGURE 5-3 — AV/C COMMAND FRAME WITH EXTENDED TYPE AND ID ADDRESSES.............................10
FIGURE 6-1 — AV/C IMMEDIATE TRANSACTION...13
FIGURE 6-2 — AV/C DEFERRED TRANSACTION...14
FIGURE 9-1 — CHANNEL USAGE STATUS COMMAND FORMAT..36
FIGURE 9-2 — CHANNEL USAGE STATUS RESPONSE FORMAT ...36
FIGURE 9-3 — CONNECT CONTROL COMMAND...37
FIGURE 9-4 — CONNECT CONTROL COMMAND WITH EXTENDED SUBUNIT_TYPE AND EXTENDED

SUBUNIT_ID..38
FIGURE 9-5 — CONNECT STATUS COMMAND FORMAT FOR A SOURCE PLUG.......................................39
FIGURE 9-6 — CONNECT STATUS COMMAND FORMAT FOR A DESTINATION PLUG...............................39
FIGURE 9-7 — CONNECT AV CONTROL COMMAND FORMAT FOR AUDIO /VIDEO STREAM40
FIGURE 9-8 — CONNECT AV STATUS COMMAND FORMAT FOR AUDIO/VIDEO STREAM........................41
FIGURE 9-9 — CONNECTIONS STATUS COMMAND FORMAT ..42
FIGURE 9-10 — CONNECTIONS RESPONSE FORMAT ..42
FIGURE 9-11 — DIGITAL INPUT COMMAND FORMAT...43

April 15, 1998, 1998003 AV/C Digital Interface Command Set General Specification, Rev. 3.0

Copyright  1996-1998, 1394 Trade Association. All rights reserved. Page v

FIGURE 9-12 — DIGITAL OUTPUT COMMAND FORMAT ...43
FIGURE 9-13 — DISCONNECT COMMAND FORMAT ...44
FIGURE 9-14 — DISCONNECT AV COMMAND FORMAT..44
FIGURE 9-15 — INPUT PLUG SIGNAL FORMAT CONTROL COMMAND FORMAT..............................44
FIGURE 9-16 — INPUT PLUG SIGNAL FORMAT STATUS COMMAND FORMAT45
FIGURE 9-17 — OUTPUT PLUG SIGNAL FORMAT CONTROL COMMAND FORMAT45
FIGURE 9-18 — OUTPUT PLUG SIGNAL FORMAT STATUS COMMAND FORMAT46
FIGURE 9-19 — SUBUNIT INFO STATUS COMMAND FORMAT ...46
FIGURE 9-20 — SUBUNIT INFO RESPONSE FORMAT ...47
FIGURE 9-21 — SUBUNIT TABLE ENTRY ..47
FIGURE 9-22 — UNIT INFO STATUS COMMAND FORMAT ...47
FIGURE 9-23 — UNIT INFO RESPONSE FORMAT ...48
FIGURE 10-1 — POWER COMMAND FORMAT...82
FIGURE 10-2 — RESERVE CONTROL COMMAND FORMAT ..83
FIGURE 10-3 — RESERVE STATUS COMMAND FORMAT...84
FIGURE 10-4 — PLUG INFO STATUS COMMAND FORMAT ..84
FIGURE 10-5 — PLUG INFO STATUS RESPONSE FORMAT FROM AN AV SUBUNIT85
FIGURE 10-6 — PLUG INFO RESPONSE FORMAT FROM AN AV UNIT ...85
FIGURE 10-7 — VENDOR-DEPENDENT COMMAND FORMAT ..85

List of Tables

TABLE 5.3-1 — SUBUNIT TYPE ENCODING ...9
TABLE 5.3-2 — SUBUNIT ID ENCODING ..9
TABLE 8.6-1 — UNIT COMMANDS ..35
TABLE 9.2-1 — SERIAL BUS AND EXTERNAL PLUG NUMBERS ...38
TABLE 9.12-1 — COMMON UNIT AND SUBUNIT COMMANDS ..49

April 15, 1998, 1998003 AV/C Digital Interface Command Set General Specification, Rev. 3.0

Copyright  1996-1998, 1394 Trade Association. All rights reserved. Page 1

 P r e f a c e

This document specifies a command set used to control consumer electronic audio/video
equipment. The command set builds upon an extensive body of standards work, underway
and completed, as referenced in section 1. Serial Bus, an IEEE standard, is the digital
interface used to transport commands from controllers to AV devices (targets) and to return
responses to the controllers. The unit architectures of these AV devices are defined within
the scope of the configuration ROM and CSR architecture standardized by ISO/IEC. The
commands themselves are encapsulated within a generic Function Control Protocol (FCP)
developed by the HD Digital VCR Conference and now part of the IEC 61883 standard.
Similarly, the format of the isochronous data itself has been developed by the HD Digital
VCR Conference.

This specification concerns itself narrowly with the syntax and semantics of a general set of
commands transmitted by controllers to AV devices and the resultant actions that occur at
the AV device. The suite of AV/C documentation has been separated into this general AV/C
specification document and separate documents for each type of subunit (VCR, Tuner, Disc,
etc.). The reader is strongly encouraged to read this document in conjunction with the
references given below, as well as with any AV/C-related documents which may be created in
the future.

AV/C Digital Interface Command Set General Specification, Rev. 3.0 April 15, 1998, 1998003

Page 2 Copyright  1996-1998, 1394 Trade Association. All rights reserved.

1 . R e f e r e n c e s

AV/C Master Index: Guide to AV/C Specification Documents - this document is available on
the 1394 Trade Association web site noted above, and is kept up to date with the latest
released versions of AV/C specifications. The reader is encouraged to always consult this
document for information on the latest versions of specifications mentioned here, as well as
specifications which may be developed in the future.

AV/C Digital Interface Command Set for VCR Subunit Specification, version 2.0.1,
January 5, 1998

AV/C Tuner Model Working Specification Version 1.0W

AV/C Tuner Model and Command Set Version 1.0

IEEE Std 1394–1995, Standard for a High Performance Serial Bus

IEC 61883, Digital Interface for Consumer Electronic Audio/Video Equipment

ISO/IEC 13123:1994, Control and Status Register (CSR) Architecture for Microcomputer
Buses

HD Digital VCR Conference, Specifications of Consumer-Use Digital VCR’s using 6.3 mm
magnetic tape (December 1995)

April 15, 1998, 1998003 AV/C Digital Interface Command Set General Specification, Rev. 3.0

Copyright  1996-1998, 1394 Trade Association. All rights reserved. Page 3

2 . C h a n g e s f r o m p r e v i o u s v e r s i o n

Version 3.0 of this document differs from version 2.0.1 in the following ways:

• The AV/C Descriptor Mechanism chapter was added

• The OPEN DESCRIPTOR, READ DESCRIPTOR, WRITE DESCRIPTOR, SEARCH
DESCRIPTOR and OBJECT NUMBER SELECT commands were added

Version 2.0.1 of this document differs from version 2.0 in the following ways:

• The AV/C Digital Interface Command Set 2.0 manual was separated into two books: General
Specification and the VCR Subunit Specification, each assigned version 2.0.1

Version 2.0 of this document differs from version 1.0 in the following ways:

• Table 5.3-1 — Subunit type encoding - the disc recorder/player type has been added, and the subunit
type 05 has been changed to “Tuner” from “TV Tuner”.

• A model for extended subunit addressing has been defined in section 5.3.3. As a result, item C3 in
Annex C (extended subunit addressing) has been removed (what was item C4 - Notification Support - is
now item C3).

• A process for defining new device types and command sets has been defined in section 5.3.6.

• The ctype GENERAL INQUIRY (value 4) was added. This allows a controller to ask a target “do you
support this opcode?” without passing any specific operands.

• The original ctype INQUIRY (value 2) was renamed SPECIFIC INQUIRY, to indicate that a set of
operands must be supplied along with the opcode when issuing the command.

AV/C Digital Interface Command Set General Specification, Rev. 3.0 April 15, 1998, 1998003

Page 4 Copyright  1996-1998, 1394 Trade Association. All rights reserved.

3 . D e f i n i t i o n s a n d a b b r e v i a t i o n s

3 . 1 C o n f o r m a n c e g l o s s a r y

Several keywords are used to differentiate between different levels of requirements and
optionality, as follows:
expected: A keyword used to describe the behavior of the hardware or software in the

design models assumed by this specification. Other hardware and software
design models may also be implemented.

may: A keyword that indicates flexibility of choice with no implied preference.
shall: A keyword indicating a mandatory requirement. Designers are required to

implement all such mandatory requirements to ensure interoperability with
other products conforming to this specification.

should: A keyword indicating flexibility of choice with a strongly preferred alternative.
Equivalent to the phrase “is recommended.”

3 . 2 T e c h n i c a l g l o s s a r y

ATN: A sequential reference number recorded as part of each track of a DVCR
cassette. Within the context of a single, uninterrupted recording session,
these reference numbers are monotonically increasing and, in that sense,
absolute track numbers. However, if the medium has been recorded at
different times there may be gaps between different recorded areas and there
is no guarantee of relationship between the absolute track numbers in one
area and those in another.

AV unit: The physical instantiation of a consumer electronic device, e.g., a camcorder
or a VCR, within a Serial Bus node. This document describes a command set
that is part of the software unit architecture for AV units.

AV subunit: an instantiation of a virtual entity that can be identified uniquely within an
AV unit and offers a set of coherent functions.

AV/C: Audio/video control, as in the AV/C Digital Interface Command Set specified
by this document.

byte: Eight bits of data.
CSR: A node or unit Control and Status Register, as defined by IEEE Std

1394–1995.
DVCR: Digital video cassette recorder as defined by the HD Digital VCR Conference,

Specifications of Consumer-Use Digital VCR’s using 6.3 mm magnetic tape.
EUI-64: Extended Unique Identifier, 64-bits, as defined by the IEEE. The EUI-64 is

a concatenation of the 24-bit company_ID obtained from the IEEE
Registration Authority Committee (RAC) and a 40-bit number (typically a
silicon serial number) that the vendor identified by company_ID guarantees
to be unique for all of its products. The EUI-64 is also known as the node
unique ID and is redundantly present in a node’s configuration ROM in both
the Bus_Info_Block and the Node_Unique_Id leaf.

FCP: Function Control Protocol, as defined by IEC 61883, Digital Interface for
Consumer Electronic Audio/Video Equipment.

IEEE: The Institute of Electrical and Electronics Engineers, Inc.
isochronous: A term that indicates the essential characteristic of a time-scale or signal,

such that the time intervals between consecutive instances either have the
same duration or durations that are integral multiples of the shortest

April 15, 1998, 1998003 AV/C Digital Interface Command Set General Specification, Rev. 3.0

Copyright  1996-1998, 1394 Trade Association. All rights reserved. Page 5

duration. In the context of Serial Bus, “isochronous” is taken to mean a
bounded worst-case latency for the transmission of data; physical and logical
constraints that introduce jitter preclude the exact definition of “isochronous."

MIC: An acronym for memory in cassette, a feature of DVCR cassettes that
provides a limited amount of nonvolatile memory that may be used for any
purpose. Standard MIC formats have been specified by the HD Digital VCR
Conference.

module: The smallest component of physical management, i.e., a replaceable device.
nibble: Four bits of data. A byte is composed of two nibbles.
node: An addressable device attached to Serial Bus with at least the minimum set

of control registers defined by IEEE Std 1394–1995.
node ID: A 16-bit number, unique within the context of an interconnected group of

Serial Buses. The node ID is used to identify both the source and destination
of Serial Bus asynchronous data packets. It can identify one single device
within the addressable group of Serial Buses (unicast), or it can identify all
devices (broadcast).

PCR: Plug Control Register, as defined by IEC 61883, Digital Interface for
Consumer Electronic Audio/Video Equipment.

iPCR: Input plug PCR, as defined by IEC 61883.
oPCR: Output plug PCR, as defined by IEC 61883.
plug: A physical or virtual end-point of connection implemented by an AV unit or

subunit that may receive or transmit isochronous or other data. Plugs may
be Serial Bus plugs, accessible through the PCR’s; they may be external,
physical plugs on the AV unit; or they may be internal virtual plugs
implemented by the AV subunits.

quadlet: Four bytes of data.
Serial Bus: The physical interconnects and higher level protocols for the peer-to-peer

transport of serial data, as defined by IEEE Std 1394–1995.
SMPTE/EBU time code:

Time code format for professional use.
stream: A time-ordered set of digital data originating from one source and

terminating at zero or more sinks. A stream is characterized by bounded
bandwidth requirements and by synchronization points, or time stamps,
within the stream data.

unit architecture: The formal specification of the format and function of the software-
visible resources and behaviors of a class of units. This document, in
conjunction with the references above, defines a unit architecture for the class
of AV devices.

AV/C Digital Interface Command Set General Specification, Rev. 3.0 April 15, 1998, 1998003

Page 6 Copyright  1996-1998, 1394 Trade Association. All rights reserved.

4 . F u n c t i o n C o n t r o l P r o t o c o l (i n f o r m a t i v e)

The AV/C commands and responses are transported by the Function Control Protocol (FCP)
defined by IEC 61883, Digital Interface for Consumer Electronic Audio/Video Equipment.
FCP provides a simple means to encapsulate device commands and responses within IEEE
Std 1394–1995 asynchronous block write transactions. The format of an FCP frame,
encapsulated within a Serial Bus block write packet, is illustrated below in Figure 4-1.

 Figure 4-1 — FCP frame within a Serial Bus packet

The destination_ID, tl, rt, tcode (write request for data block, 00012), pri, source_ID,
data_length and CRC fields are as defined by IEEE Std 1394–1995.

The cts field defines the command transaction format used by the FCP frame. For the AV/C
commands defined by this document, the cts field shall be zero.

Commands originated by a device at a Serial Bus node, the controller, are addressed to the
FCP_COMMAND register, destination_offset FFFF F000 0B0016 at the Serial Bus node
that contains the device to be controlled, the target. The remotely controlled device in turn
returns its response(s) to the FCP_RESPONSE register, destination_offset FFFF F000
0D0016, at the controller.

The data payload of both FCP request and response packets, specified by data_length , is
limited to a maximum of 512 bytes.

NOTE: If the size of an FCP frame is exactly four bytes, a Serial Bus quadlet write transaction shall be
used to transmit the data instead of the block write packet illustrated above.

transmitted first

transmitted last

zero

destination_ID

data_length

source_ID

header_CRC

data_CRC

FCP data

zero pad bytes (if necessary)

cts

destination_offset

pri0001rttl

FCP
frame

April 15, 1998, 1998003 AV/C Digital Interface Command Set General Specification, Rev. 3.0

Copyright  1996-1998, 1394 Trade Association. All rights reserved. Page 7

5 . AV / C f r a m e s

AV/C commands and responses are encapsulated within FCP frames, as described above,
and are transmitted between the controller and target FCP_COMMAND and
FCP_RESPONSE registers. The format of both the AV/C command and the AV/C response
frames are similar, as described in the clauses that follow.

5 . 1 A V / C c o m m a n d f r a m e

An AV/C command frame is up to 512 bytes of command payload with the structure shown
in Figure 5-1 below:

 Figure 5-1 — AV/C command frame

All of the operands, up to a maximum permitted by the overall payload limit of 512 bytes,
are optional and are defined by ctype, subunit_type and opcode.

NOTE: If an AV/C command frame exceeds the maximum capacity of an AV unit or subunit to which it
is addressed, it may be ignored.

The subunit_type and subunit_ID fields form an AV/C address which identifies the
destination of the AV/C command frame and the source of the AV/C response frame. If either
the subunit type or subunit ID values have been extended, then there will be additional
bytes used before the opcode byte. Please refer to the section titled “AV/C address
(subunit_type, subunit_ID)” for details.

5 . 2 A V / C r e s p o n s e f r a m e

An AV/C response frame is up to 512 bytes of response payload with the structure shown in
Figure 5-2 below:

 Figure 5-2 — AV/C response frame

operand[0]opcode

operand[1] operand[2] operand[3] operand[4]

operand[n]

…

zero pad bytes (if necessary)

0000 response subunit_typ
e

subuni
t_ID

transmitted first

transmitted last

operand[0]opcode

operand[1] operand[2] operand[3] operand[4]

operand[n]

…

zero pad bytes (if necessary)

0000 ctype subunit_typ
e

subuni
t_ID

transmitted first

transmitted last

AV/C Digital Interface Command Set General Specification, Rev. 3.0 April 15, 1998, 1998003

Page 8 Copyright  1996-1998, 1394 Trade Association. All rights reserved.

All of the operands, up to a maximum permitted by the overall payload limit of 512 bytes,
are optional and are defined by response, subunit_type and opcode.

The subunit_type and subunit_ID fields form an AV/C address which identifies the source of
the responding AV/C entity and equals the destination to which the corresponding AV/C
command frame was sent. As with the command frame, it is possible that the subunit type
and/or subunit ID have been extended, thus requiring more bytes before the opcode field.

5 . 3 A V / C f r a m e c o m p o n e n t s

The component fields and code values for AV/C command and response frames are defined
in this clause.

Except as otherwise indicated, reserved codes and fields within an AV/C frame are reserved
for future specification. All reserved fields shall be set to zero by the sender of the AV/C
frame. The sender shall not use reserved or invalid values for any components of an AV/C
frame.

Responses to reserved or invalid codes and fields are defined in section 6.

5 . 3 . 1 C o m m a n d t y p e (c t y p e)

The 4-bit command type, ctype, defines one of five types of commands, as defined by the
table below:

5 . 3 . 2 R e s p o n s e c o d e (r e s p o n s e)

The 4-bit response code, response, defines one of seven types of response, as defined by the
following table:

Value Command type

0 CONTROL

1 STATUS

2 SPECIFIC INQUIRY

3 NOTIFY

4 GENERAL INQUIRY

5 – 7 Reserved for future
specification

8 – F16 Reserved for response codes

Value Response

0 – 7 Reserved for command types

8 NOT IMPLEMENTED

9 ACCEPTED

A16 REJECTED

B16 IN TRANSITION

C16 IMPLEMENTED / STABLE

D16 CHANGED

E16 Reserved for future
specification

F16 INTERIM

April 15, 1998, 1998003 AV/C Digital Interface Command Set General Specification, Rev. 3.0

Copyright  1996-1998, 1394 Trade Association. All rights reserved. Page 9

5 . 3 . 3 A V / C a d d r e s s (s u b u n i t _ t y p e , s u b u n i t _ I D)

Taken together, the subunit_type and subunit_ID fields define the address of the recipient
of the command or the source of the response. Version 1.0 of the AV/C specification limited
subunit addressing to 32 subunit types and 5 subunits of a given type within a unit (refer to
Table 5.3-1 and Table 5.3-2 of the original 1.0 specification for details). To allow for growth
beyond these limitations, a backward compatible model for an extended subunit address has
been devised using previously reserved subunit_type and subunit_ID values. The following
tables illustrate the new definitions:

An AV/C address with subunit_type value 1F16 and subunit_ID value 7 addresses the
complete AV unit instead of one of its subunits. The combinations of subunit_type value 1F16

and subunit_ID values 0 through 6 are reserved.

If the subunit_type value is not equal to 1F16, the subunit_ID indicates the ordinal of the
subunit as indicated by subunit_type. In this case, the subunit_ID commences at zero and
is consecutively numbered up to the total instances less one.

IMPORTANT: The subunit_ID value specified in extended fields shall be equal to the exact
instance number, NOT less one. This is required because there are restrictions on the value

Subunit type Meaning

0 Video monitor

1 – 2 Reserved for future
specification

3 disc recorder/player (audio or
video)

4 tape recorder/player (audio or
video)

5 Tuner

6 Reserved for future
specification

7 Video camera

8 – 1B 16 Reserved for future
specification

1C16 Vendor unique

1D16 Reserved for all subunit types

1E16 subunit_type extended to next
byte

1F16 Unit

 Table 5.3-1 — Subunit type encoding

Subunit ID Meaning

0 - 4 Instance number

5 subunit_ID extended to next
byte

6 Reserved for all instances

7 Ignore

 Table 5.3-2 — Subunit ID encoding

AV/C Digital Interface Command Set General Specification, Rev. 3.0 April 15, 1998, 1998003

Page 10 Copyright  1996-1998, 1394 Trade Association. All rights reserved.

0 in extended address fields. Please refer to the tables below, which define the meaning of
extended subunit_type and subunit_ID fields.

The subunit_ID field can be used as a normal instance number in the case where an
extended subunit_type is specified. This gives an identical numbering scheme for extended
subunit_types and normal subunit_types.

If extended addressing is used, each extra byte is either completely used for an extended
subunit_type or an extended subunit_ID. This differs from the normal subunit address byte,
in which both the type and ID are specified within a single byte.

If byte n in an AV/C frame contains an AV/C address value that indicates that both the
subunit-type and subunit-ID are extended to the next byte, the subunit_type is extended
using byte n+1 of the AV/C frame and the subunit-ID is extended using byte n+2. Compare
Figure 5-1 to the following diagram of an AV/C command frame with extended type and ID
addresses:

The following tables illustrate the definitions for extended subunit_type and subunit_ID
values:

Extended subunit_type value Meaning

0 reserved for future specification

1..FE16 extended subunit_type

FF16 extended subunit_type extended to next byte

Extended subunit_ID value Meaning

0 reserved for future specification

1..FE16 extended subunit_ID

FF16 extended subunit_ID extended to next byte

Note that by using the value FF16 in the extended type or ID fields, it is possible to specify
an unlimited number of subunit types or ID’s of a given type.

Extended subunit_ID values continue counting where the previous (extended) subunit_ID
stopped. For example, if 3 bytes (one normal and two extended) are used for the subunit_ID,
the value 1 in the third byte addresses instance number: 5 + 254 + 1 = the 260th instance.
Note that the actual entries in the fields would be 5, FF16, 1.

In this example, the instance number 5 is derived from the normal subunit_ID field entry of
5 which indicates that this is an extended ID. The instance number is indicated by the
highest legitimate ID for that field. In the case of the normal address field, the highest ID
value is 5. For extended ID fields, it is FE16, or 254. Remember that the ID entries in the

transmitted first
0000 ctype subunit_t

ype
subuni
t_ID

extended
subunit_type

extended
subunit_ID

opcode operand[0] operand[1] operand[2]
... ...

operand[n] zero pad bytes (if necessary)
transmitted last

Figure 5-3 — AV/C command frame with extended type and ID
addresses

April 15, 1998, 1998003 AV/C Digital Interface Command Set General Specification, Rev. 3.0

Copyright  1996-1998, 1394 Trade Association. All rights reserved. Page 11

normal subunit_ID field are equal to the “instance number - 1” and that the entries in all of
the extended fields are equal to the “instance number”.

5 . 3 . 4 O p e r a t i o n (o p c o d e)

Within the five types of AV/C commands, CONTROL, STATUS, SPECIFIC INQUIRY,
NOTIFY and GENERAL INQUIRY, the opcode field defines the operation to be performed
or the status to be returned. The permissible values of opcode are divided into ranges valid
for commands addressed to AV subunits, AV units or both, as follows.

5 . 3 . 5 O p e r a n d s

The number and meaning of the operand[n] fields are determined by the ctype,
subunit_type and opcode fields, as defined in clauses that follow.

5 . 3 . 6 S u b u n i t c l a s s i f i c a t i o n p r o c e s s

The AV/C protocol has been designed for future growth, to accommodate the creation of new
types of products that were not envisioned when the protocol was originally developed. When
a manufacturer is designing such a new piece of equipment, the following guidelines should
be used for determining if the device falls into an existing category (as defined in Table 5.3-
1), or if a new type needs to be defined. Note that new device types may require
modifications to existing commands or the creation of entirely new commands.

The basic approach to type classification is a two step process:

1) Examine the MAIN functionality of the subunit, in terms of the following:

• transport mechanism - does it have one?

• signal input - is the usefulness of this subunit defined mostly by the fact that a signal ends up here
(regardless of the fact that it may be propagated without changes)?

• signal output - is this subunit a signal source?

• signal processing - accepts input, performs some sort of processing, and then outputs modified data

• no signal input or output - a utility of some kind

2) If a set of commands do not apply equally to audio or video data, then decompose the
subunit type into separate audio and video categories.

Value Addressing mode

0 – F16 Unit and subunit commands

1016 – 3F16 Unit commands

4016 – 7F16 Subunit commands

8016 – 9F16 Reserved for future
specification

A016 – BF16 Unit and subunit commands

C016 – DF16 Subunit commands

EE16 – FF16 Reserved for future
specification

AV/C Digital Interface Command Set General Specification, Rev. 3.0 April 15, 1998, 1998003

Page 12 Copyright  1996-1998, 1394 Trade Association. All rights reserved.

While many subunits may have both input and output signals, the important item to
consider is the MAIN functionality - in other words, what is the purpose of this subunit? The
main purpose of a video camera subunit is to capture data through its lens and send that
signal somewhere - it's a signal source. The main purpose of a television monitor is for
viewing the input signal - it's a signal input or destination.

A utility such as a timer or a mechanism that can pan/tilt a camera does not deal with
signal input or output, but it may be part of a controllable subunit.

When selecting a new type value and the appropriate command set, the following guidelines
should be followed:

1) Find an unused subunit type value from the table of pre-defined types (Table 5.3-1).

2) Select only the specified new subunit type from the table; other codes for unused types
must remain reserved.

3) Define a (relatively) complete set of commands for this new type. This step includes the
definition of new commands that are unique to this type, as well as the verification that
existing commands (where applicable) will work as defined. New devices that have similar
functionality to existing devices should map their control features to the existing commands.

April 15, 1998, 1998003 AV/C Digital Interface Command Set General Specification, Rev. 3.0

Copyright  1996-1998, 1394 Trade Association. All rights reserved. Page 13

6 . AV / C o p e r a t i o n s

AV/C commands transmitted by a controller and the associated response(s) returned by the
target are called an AV/C transaction. An AV/C transaction consists of one AV/C command
frame addressed to the target’s FCP_COMMAND register and zero or more AV/C response
frames addressed to the controller’s FCP_RESPONSE register. Unless stated otherwise
within individual command descriptions, it is assumed that at least one response will be
returned.

The target’s node_ID identifies either a specific AV unit or it identifies all AV units
(broadcast). Unless stated otherwise within individual command descriptions, it is assumed
that a single AV unit is addressed by the command. An example of a simple AV/C
transaction, in which the target is able to complete the request before responding, is shown
below in Figure 6-1.

 Figure 6-1 — AV/C immediate transaction

In an immediate transaction any response code, except INTERIM or CHANGED, is
permitted. The transaction is complete when the target writes the AV/C response frame to
the controller’s FCP_RESPONSE register.

For some transactions the target may not be able to complete the request (or determine if it
is possible to complete the request) within the 100 milliseconds allowed. In this case, the
target shall return an initial response of INTERIM with the expectation that a final
response will follow later. Figure 6-2 below illustrates an AV/C transaction with an
intermediate response.

Controller Target

response

command

Internal action
completes
 (<= 100 ms)

AV/C Digital Interface Command Set General Specification, Rev. 3.0 April 15, 1998, 1998003

Page 14 Copyright  1996-1998, 1394 Trade Association. All rights reserved.

 Figure 6-2 — AV/C deferred transaction

A target shall follow the following procedures when AV/C response frames are returned to
the controller:

The target shall generate a response frame within 100 milliseconds of the receipt of the AV/C
command frame. Targets should respond as quickly as possible.

If the AV/C command frame contains a reserved value in the ctype field, the target shall ignore the
command and shall not generate a response frame.

If the target is already occupied with a previous command, it may ignore any AV/C command frames
received. Note that the receipt of an AV/C command frame shall always be acknowledged by a target.
The target ignores a command frame by a failure to return a response frame.

NOTE: A controller that does not receive a response frame for an AV/C command frame within 100
milliseconds may retry the command by resending the same command frame.

If the target is not occupied with a previous command, it shall create an AV/C response frame from the
command frame by first copying all of the bytes of the command frame that precede opcode and then
inserting the correct response code. The remainder of the response frame, opcode and operands, is
dependent upon the ctype, subunit_type and opcode of the original command.

NOTE: Response frames returned after control commands are usually identical to the original
command frame except for the response field. A response to a status or notify command typically has
different response and operand fields and, in some cases, a different opcode field.

If the target receives a command frame whose subunit_type and subunit_ID fields address the command
to a nonexistent subunit, the target shall return a response code of NOT IMPLEMENTED.

If the target is able to initiate the requested command in less than 100 milliseconds, it shall return a
response code other than INTERIM. This includes those cases where the target determines that it cannot
execute the command, such as a REJECTED, response. The return of any response code other than
INTERIM marks the transaction completed and the target is normally ready to accept other transactions
at its FCP_COMMAND register.

Controller Target

INTERIM
response

command Not to exceed
100 ms

final response

Unspecified
interval

April 15, 1998, 1998003 AV/C Digital Interface Command Set General Specification, Rev. 3.0

Copyright  1996-1998, 1394 Trade Association. All rights reserved. Page 15

If the target is unable to complete the command within 100 milliseconds, it shall promptly return an
intermediate response code of INTERIM. Subsequent to an initial response of INTERIM, the target
shall not send any additional INTERIM responses for this command. There is no time limit on
command completion once an INTERIM response has been sent. The target shall ultimately send a
final response when the command completes.

If the target detects a Serial Bus reset, it shall reset its state to be able to accept AV/C command frames
at its FCP_COMMAND register. Any in progress transactions shall be discarded without the return of
a response frame.

If a target receives an AV/C command frame using the broadcasting node_ID, and a response of NOT
IMPLEMENTED would be required, no response shall be returned.

In order to correlate a response frame with an outstanding AV/C command, a controller shall
examine certain fields in the response frame. The subunit_type and subunit_ID fields are
never modified by the target. The ctype field is overwritten with the response code returned.
The opcode and operand[n] fields may or may not be altered, dependent upon the command
type, subunit_type and opcode. For any particular opcode, consult the clauses that follow for
the details of the response frame returned by the target.

AV/C Digital Interface Command Set General Specification, Rev. 3.0 April 15, 1998, 1998003

Page 16 Copyright  1996-1998, 1394 Trade Association. All rights reserved.

7 . AV / C c o m m a n d s

AV/C commands are variable-length strings of bytes that are embedded within a command
frame and addressed to a particular AV unit or subunit. A command consists of a command
type (ctype), a unit or subunit to which the command is addressed (subunit_type), an
operation code (opcode) and one or more operands. Commands are described in the clauses
that follow according to their command type, specified by ctype values of CONTROL,
STATUS, SPECIFIC INQUIRY, NOTIFY or GENERAL INQUIRY.

7 . 1 S u p p o r t l e v e l s

Each AV unit or subunit may implement a subset of the AV/C command set. An
unsupported command shall be rejected with a response of NOT IMPLEMENTED. Support
for the different commands is characterized as mandatory, recommended, optional and
vendor-dependent, as defined below:

Mandatory The command shall be supported by any audio/video device that
claims compliance with this specification and that implements the
AV unit or subunit type(s) for which the command is defined. AV/C
compliant devices are identified by configuration ROM entries.

Recommended For an AV/C compliant device, the command is optional but it
represents a basic functionality, e.g., video and audio insert modes for
a VCR subunit’s RECORD command. If the device supports unit or
subunit type(s) that have the functionality corresponding to the
command, it is recommended that the command be implemented.

Optional The command is optional for an AV/C compliant device.

Vendor-dependent Support for and interpretation of the command are defined by the
device vendor.

Support levels for the different commands vary according to ctype.

7 . 2 C o n t r o l c o m m a n d s

A control command is sent by a controller to another AV device, the target, to instruct the
target to perform an operation. Either the AV unit or a subunit may be the recipient of the
command, as determined by the subunit_type and subunit_ID fields in the command frame.
The remaining fields, opcode and operand[n], specify the command.

Subject to the procedures described in section 6, a target that receives a control command
shall return an AV/C response frame with one of the four response codes described below.

NOT IMPLEMENTED The target does not support the control command specified by opcode
and operand[n] or the command is addressed to a subunit not
implemented by the target. Target state is not modified.

ACCEPTED The target implements the control command specified by opcode and
operand[n] and the target state permits execution of the command.
Note that command execution may not be complete at the time a
response of ACCEPTED is returned. For example, a PLAY control
command sent to a VCR may be acknowledged as accepted before the
head mechanisms have engaged and the tape has started to move. The
return of a response of ACCEPTED does not distinguish between a

April 15, 1998, 1998003 AV/C Digital Interface Command Set General Specification, Rev. 3.0

Copyright  1996-1998, 1394 Trade Association. All rights reserved. Page 17

command that has completed immediately and one that is deferred
but expected to complete without error.

REJECTED The target implements the control command specified by opcode and
operand[n] but the target state does not permit execution of the
command. For example, a PLAY control command sent to a VCR
that has no cassette inserted would be rejected. The target state may
be modified as a result of the control command.

INTERIM If the control command specified by opcode and operand[n] is
implemented but the target is unable to respond with either
ACCEPTED or REJECTED within 100 milliseconds, it shall return
a response frame that indicates INTERIM. Unless a subsequent bus
reset causes the AV/C transaction to be aborted, the target shall
ultimately return a response frame with a response code of
ACCEPTED or REJECTED.

7 . 3 S t a t u s c o m m a n d s

A status command is sent by a controller to an AV device to request the device’s current
status. Status commands may be sent to either AV units or subunits. No target state is
altered by the receipt of a status command.

NOTE: With some notable exceptions, for example the status commands that deal with a VCR’s
transport states, the status commands bear a family resemblance to the control commands. The same
opcode that is used to issue a control command to a target is generally used to request corresponding
status.

A target that receives a status command shall return an AV/C response frame with one of
the four response codes described below:

NOT IMPLEMENTED The target does not support the status command specified by opcode
and operand[n] or the command is addressed to a subunit not
implemented by the target.

REJECTED The target implements the status command specified by opcode and
operand[n] but the target state does not permit the return of status for
the command.

IN TRANSITION The target implements the status command specified by opcode and
operand[n] but the target state is in transition, possibly because of an
already acknowledged command or a manual operation. A subsequent
status command, at an unspecified future time, may result in the
return of STABLE status.

STABLE The target implements the status command specified by opcode and
operand[n] and the information requested is reported in the opcode
and operand[n] values in the AV/C response frame.

NOTE: Stable information may be returned for target information that is changing because of command
execution. For example, the tape position reported by a VCR may be an accurate snapshot at the time
the status command was accepted, but a subsequent status command could yield a different result.

Except for the STABLE and IN TRANSITION responses, the AV/C response frame data
contains the same opcode, operands and addressing fields as the command frame. When
status information is available, both the opcode field and one or more of the operand[n] fields
may be updated with the status information.

AV/C Digital Interface Command Set General Specification, Rev. 3.0 April 15, 1998, 1998003

Page 18 Copyright  1996-1998, 1394 Trade Association. All rights reserved.

7 . 4 S P E C I F I C I N Q U I R Y c o m m a n d s

Inquiry commands may be used by a controller to determine whether or not a target AV
device supports a particular control command. Except for the ctype field, the AV/C command
frame for an inquiry command is identical to the corresponding control command.

A controller may reliably use inquiry commands to probe the capabilities of a target, since
the target shall not modify any state nor initiate any command execution in response to an
inquiry command.

Only two response codes, IMPLEMENTED or NOT IMPLEMENTED are permitted in the
response frame returned by the target. All other fields in the response frame are exact copies
of the command frame. A response of IMPLEMENTED specifies that the corresponding
control command specified by opcode and operand[n] is implemented by the target AV device.
An AV device implementation may validate all of the operands or it may validate only
opcode and enough of the operands to uniquely identify the control command and determine
its support level.

NOTE: If a controller wishes to determine whether or not a particular status command is supported, it
should issue the command. This is safe because status commands, whether or not implemented by a
target, shall not cause state changes in the target.

Unlike the other command types, inquiry commands do not have a support level since they
return information about the support level of the corresponding control command. However,
the ability of an AV device to provide a response to an inquiry command for any opcode is
mandatory. This insures that a controller shall always receive a response to a support level
inquiry command.

The broadcasting node_ID shall not be used for inquiry commands.

7 . 5 N o t i f y c o m m a n d s

A controller that desires to receive notification of future changes in an AV device’s state may
use the notify command. Responses to a notify command shall indicate the current state of
the target and then, at some indeterminate time in the future, indicate the changed state of
the target.

A target that receives a notify command shall not modify its state but shall generate an
immediate response frame with one of the three response codes described below:

NOT IMPLEMENTED The target does not support the notify command specified by opcode
and operand[n] or the command is addressed to a subunit not
implemented by the target.

REJECTED The target implements event notification for the condition specified
by opcode and operand[n] but is not able to supply the requested
information.

INTERIM The target supports the requested event notification and has accepted
the notify command for any future change of state. The current state is
indicated by the opcode and operand[n] data returned in the response
frame. At a some future time, the target shall return an AV/C
response frame with either a REJECTED or CHANGED response
code.

Once a target has accepted a notify command by the return of an INTERIM response frame,
the target is primed to return a subsequent response frame upon the first change in target

April 15, 1998, 1998003 AV/C Digital Interface Command Set General Specification, Rev. 3.0

Copyright  1996-1998, 1394 Trade Association. All rights reserved. Page 19

state. The future change of target state could be the result of an operation in progress when
the notify command was received or it could be the result of a control command not yet
received by the target.

CHANGED The target supports the event notification specified by opcode and
operand[n] and the target state differs from the target state at the time
the INTERIM response was returned. The altered target state is
indicated by the opcode and operand[n] data returned in the response
frame.

A typical example of the use of a notify command might involve a VCR whose cassette is
being rewound. The initial response to a TRANSPORT STATE notify command is an
indication of INTERIM and a “rewinding” state. When the cassette’s beginning of medium is
reached, the target generates a final response frame of CHANGED and a state that
indicates “stopped”.

Note that notification is a one-shot operation. If the controller wishes to be notified of
additional changes in a target, the controller must issue a notify command after each
CHANGED response.

7 . 6 G E N E R A L I N Q U I R Y c o m m a n d s

General inquiry commands may be used by a controller to determine whether or not a target
AV device supports a particular control command WITHOUT being required to specify a
particular set of parameters for that command. The format of the GENERAL INQUIRY
command frame consists of only the opcode of the command which is being queried.

As with the SPECIFIC INQUIRY command, the target shall not modify any state nor
initiate any command execution in response to a general inquiry command.

Only two response codes, IMPLEMENTED or NOT IMPLEMENTED are permitted in the
response frame returned by the target. The response frame shall also contain the opcode
that was originally passed in. A response of IMPLEMENTED specifies that at least one of
the corresponding control command variations specified by opcode is implemented by the
target AV device. For example, a VCR which supports the BACKWARD control command
with the video scene operand, but not the video frame or index operands, shall return
IMPLEMENTED for the BACKWARD general inquiry command.

Unlike the other command types, general inquiry commands do not have a support level
since they return information about the support level of the corresponding control command.
However, the ability of an AV device to provide a response to a general inquiry command for
any opcode is mandatory. This insures that a controller shall always receive a response to a
support level inquiry command.

The general inquiry command type was defined after the original AV/C specification, and
some products, were created. Hence, there will be some devices which do not respond to this
command type. A controller which does not receive a response should try the SPECIFIC
INQUIRY command as a fallback measure.

The broadcasting node_ID shall not be used for general inquiry commands.

AV/C Digital Interface Command Set General Specification, Rev. 3.0 April 15, 1998, 1998003

Page 20 Copyright  1996-1998, 1394 Trade Association. All rights reserved.

8 . AV / C D e s c r i p t o r M e c h a n i s m

The AV/C descriptor mechanism supports the creation of various data structures, both static
and dynamic, which contain useful information about AV/C units, subunits, and their
associated components such as plugs. Additionally, these structures can be used to model
the media contents provided by these subunits.

The structures can be combined to form a content navigation and selection mechanism which
allows controllers to discover and access all media contents in a general way, limiting the
media- and subunit-type specific knowledge required to perform such tasks.

These structures are applicable to any type of unit and subunit definitions of the AV/C
protocol.

A descriptor is an address space on a target which contains attributes or other descriptive
information. One example is the subunit identifier descriptor, which is a data block
containing various pieces of information regarding a particular type of subunit. The format
and contents of the subunit identifier descriptor are unique to each type of subunit. For
example, all tuner subunits will have the same kind of subunit identifier descriptor. Most of
the information in this structure is static in nature. However, depending on the type of
subunit and the particular technologies that it implements, it is possible that some of the
information may change from time to time.

Other standard descriptor structures include an object list and the object entries that it
contains. An object is a generic concept that applies to a particular type of subunit, which
can be defined as needed. For example, a tuner subunit implements an object list which
contains information about the various services which are available on the system. Each
service is represented by an object.

Other examples of where objects may be useful might be for disc players, where the objects
represent tracks on the media. For digital still cameras, objects could be the pictures that
have been taken.

An object list is a generic container concept; each entry in the list is an object descriptor
structure. These may also be referred to as object entries, or simply, objects.

Objects and object lists can be used to model data relationships where one entity is
composed of several sub-entities. For example, an audio compact disc (CD) can be composed
of the collection of audio tracks on that disc.

In the above example, an object would be used to describe the CD. That object would, in
turn, have a reference to a list of objects, where each one represents an audio track. Further
extending the example, a collection of several CD’s can be represented by a list, where each
object entry describes one of those CD’s.

The hierarchical model of lists and objects can be continued to any arbitrary level of
complexity.

We define the root or beginning of a hierarchy to be a list, which may contain one or more
objects. This list will be accessible by its list_ID value, which can be found in the subunit
identifier descriptor. A subunit identifier descriptor may refer to several root lists.

April 15, 1998, 1998003 AV/C Digital Interface Command Set General Specification, Rev. 3.0

Copyright  1996-1998, 1394 Trade Association. All rights reserved. Page 21

When traversing away from the root, we say that we are moving down in the hierarchy.
Conversely, when moving toward the root, we are moving up in the hierarchy. There is only
one root for the hierarchy, and there may be any number of leaf nodes (end points).

When an object entry has object lists associated with it, we say that the object entry is a
parent. The object list that it refers to is a child.

So, object lists which are referred to by the subunit identifier descriptor are root lists; all
other lists, which must be referred to by objects within other lists, are child lists. Object lists
and object entries are defined per subunit type (tuner, etc.). There may or may not be
crossover usage in other subunit types, depending on the definitions.

The unit and subunit identifier descriptors mentioned in this document are examples of
descriptor structures; objects and object lists are also descriptors. When a controller wants
to access a descriptor, it will use the descriptor commands to specify which descriptor it
wants to deal with.

One very important fact to understand is that the structures of the various descriptors
defined here are for interfacing purposes, where two separate AV/C entities (a target and a
controller) must exchange information. The internal storage strategy used by a particular
entity is completely transparent to these interface definitions. Data can be stored in any
manner or location as required by the entity. Only when it comes time to present it to a
controller will it be necessary to use these structure formats.

The following diagram illustrates the general relationship between the subunit identifier
descriptor, object lists and object entries:

AV/C Digital Interface Command Set General Specification, Rev. 3.0 April 15, 1998, 1998003

Page 22 Copyright  1996-1998, 1394 Trade Association. All rights reserved.

List 0

•
•
•

•
•
•

Subunit Identifier
Descriptor structure

List n - 1

• • •

List n - 1

List 0

List 0 is the root of a hierarchy, and list n-1 is the
root of another hierarchy.

8 . 1 T h e G e n e r a l S u b u n i t I d e n t i f i e r D e s c r i p t o r

The subunit identifier descriptor is a data structure that contains attribute information
about the subunit that it refers to; the descriptor content and format can vary based on the
type of subunit that it describes. All subunit identifier descriptors share some common
information. The basic structure of a subunit identifier descriptor is as follows:

April 15, 1998, 1998003 AV/C Digital Interface Command Set General Specification, Rev. 3.0

Copyright  1996-1998, 1394 Trade Association. All rights reserved. Page 23

The descriptor_length field contains the number of bytes which follow in this descriptor
structure. The value of this field does not include the length field itself.

The generation_ID field specifies which AV/C descriptor format is used by this subunit for all
data structures it maintains, and the command sets which affect them. This field can have
one of the following values:

The size_of_list_ID field indicates the number of bytes used to indicate a list ID for this
subunit. All lists maintained within the scope of this subunit shall use this number of bytes
for their ID values.

The size_of_object_ID field indicates the number of bytes used to indicate an object ID for
this subunit. All objects maintained within the scope of the subunit which have an ID shall
use this number of bytes for their ID. It is possible for some objects within the scope of a
subunit to have ID values, and for some to not have ID values.

The size_of_object_position field indicates the number of bytes used when referring to an
object by its position in a list. All such references used with the subunit shall use this
number of bytes for the position reference.

The number_of_root_object_lists field contains the number of root object lists directly
associated with this subunit. This field is 2 bytes in size.

The General Subunit Identifier Descriptor
address contents
00 0016 descriptor_length
00 0116

00 0216 generation_ID
00 0316 size_of_list_ID
00 0416 size_of_object_ID
00 0516 size_of_object_position
00 0616 number_of_root_object_lists (n)
00 0716

00 0816 root_object_list_id_0
:
: :
: root_object_list_id_n-1
:
: subunit_dependent_length
:
:
: subunit_dependent_information
:
: manufacturer_dependent_length
:
:
: manufacturer_dependent_information
:

generation_ID values
generation_ID meaning

0016 Data structures and command sets as
specified in the AV/C General
Specification, version 3.0

all others reserved for future specification

AV/C Digital Interface Command Set General Specification, Rev. 3.0 April 15, 1998, 1998003

Page 24 Copyright  1996-1998, 1394 Trade Association. All rights reserved.

The root_object_list_id_x fields are the ID values for each of the root object lists associated
with this subunit (all of the lists that are referenced from the subunit identifier are root
lists). The number_of_root_object_lists field indicates how many of these ID values are
present. Each of these lists forms the top of an individual hierarchy; this concept will be
explained in more detail in the section titled Object Lists.

The subunit_dependent_length and subunit_dependent_information fields contain information
whose format and contents will depend on the type of subunit this is describing. The length
field specifies the number of bytes in the information field.

The manufacturer_dependent_length and manufacturer_dependent_information fields are
used for vendor-specific data. The format and contents are completely up to the
manufacturer. The length field specifies the number of bytes in the information field. If there
is no manufacturer-dependent information in the descriptor, then the length field shall be
zero and the manufacturer_dependent_information field shall not exist.

8 . 2 O b j e c t L i s t s

An object list contains entries which we call objects. The meaning and format of an object
will be defined for the particular kind of information it represents. Object lists will be pre-
defined as part of the model for a unit or subunit.

Object lists are uniquely identified within the scope of the entire subunit by their unique
list_ID field, the size of which is specified in the subunit identifier descriptor as mentioned
above. The following table illustrates the general list ID value range assignments:

Depending on the type of subunit for which a set of lists are defined, some lists may have
fixed ID values, while others will vary based on how many of the lists are present at any
given time. Note that the size of the maximum list ID value is theoretically unbounded, since
the subunit can specify the number of bytes used.

All object lists will have the same basic layout, which includes some standard fields at the
beginning, and then a collection of object entries. The descriptor defines the template for this
basic layout. The object list descriptor has the following format:

List ID Value Assignment Ranges
range of values list definition
000016 - 0FFF16 reserved
100016 - 3FFF16 subunit-type dependent
400016 - FFFF16 reserved

1 000016 - max list ID
value

subunit-type dependent

April 15, 1998, 1998003 AV/C Digital Interface Command Set General Specification, Rev. 3.0

Copyright  1996-1998, 1394 Trade Association. All rights reserved. Page 25

The descriptor_length field contains the number of bytes which follow in this object list
structure. The value of this field does not include the length field itself.

The list_type field indicates what kind of list this is. There are two ranges of values defined
for list_type: general and subunit-type-specific. Within the general range, ID values will have
the same meaning for all types of subunits which use them. Within the subunit-specific
range, the meaning of a particular list_type value will depend on the subunit type for which
that list is defined.

Because the list_type definitions within the subunit range are unique to a given type of
subunit (the combination of subunit type value and list_type are unique), different subunit
types may define list_types with the same value in this range.

The following table shows the range definitions for list_type:

For details on subunit-dependent list_type definitions, please refer to the appropriate
subunit specification.

The attributes field contains bit flags which indicate attributes that pertain to the entire
list structure. These values are defined as general attributes, not specific to any particular
kind of list in any particular type of subunit.

The following table illustrates the attributes that are defined for both object lists and object
entries. Some of these attributes are common to both objects and object lists, and others are
unique to one type or the other. Unless otherwise noted, the attributes in this table are
common to both:

The General Object List Descriptor
address contents
00 0016 descriptor_length
00 0116

00 0216 list_type
00 0316 attributes
00 0416 size_of_list_specific_information
00 0516

00 0616

: list_specific_information
:
: number_of_entries (n)
:
:
: object_entry[0]
:
: :
:
: object_entry[n-1]
:

list_type Value Assignment Ranges
range of values list definition

0016 - 7F16 general definitions
8016 - FF16 subunit-type dependent

AV/C Digital Interface Command Set General Specification, Rev. 3.0 April 15, 1998, 1998003

Page 26 Copyright  1996-1998, 1394 Trade Association. All rights reserved.

The size_of_list_specific_information field specifies the number of bytes used for the following
list_specific_information field. The size field is two bytes, and is NOT included in this
calculation.

The list_specific_information field contains information that is specific to a particular
list_type. Refer to the specific list_type definitions for details on this field.

The number_of_entries field contains the number of entries in this list.

The object_entry[x] field is an object entry, the basic format of which is presented next.

8 . 3 O b j e c t E n t r i e s

All object entries share a basic common format, but there is room for technology-specific
information within the entry. The basic object entry descriptor has the following structure:

Attribute value Name Meaning
1xxx xxxx has_more_attributes If this bit is set to 1, then the next byte is also

an attributes byte. If this bit is 0, then the next
byte is as defined for this structure.

x1xx xxxx skip This bit indicates the presence of data. If this
bit is set to 1, the controller must skip the list
or object entry.

When this bit is set to 0, then the information
in the list or object entry may be read by the
controller.

The subunit can use this bit to perform a
“delayed memory clean up” operation. By
setting this bit, the subunit can defer the actual
deletion and reclamation of this memory until a
convenient time.

xx1x xxxx has_child_ID VALID ONLY FOR THE OBJECT ENTRY
DESCRIPTOR

If this bit is set to 1, then the object entry has
a child_list_ID field. If it is 0, then this field
does not exist in the structure.

xxx1 xxxx has_object_ID VALID ONLY FOR THE OBJECT LIST
DESCRIPTOR

If this bit is set to 1, then all objects in this list
have an ID. If it is zero, then none of the
objects in this list have an ID.

xxxx 1xxx up_to_date This bit indicates the validity of data. If this bit
is set to 1, then the descriptor data is known by
the subunit to be up to date.

If this bit is set to 0, then the descriptor data
might be stale (the subunit may or may not be
sure of this), and the controller should take this
into consideration when dealing with the data.

all others Reserved for future specification.

April 15, 1998, 1998003 AV/C Digital Interface Command Set General Specification, Rev. 3.0

Copyright  1996-1998, 1394 Trade Association. All rights reserved. Page 27

NOTE: The child_list_ID and object_ID fields exist only if specified in the attributes field.

The descriptor_length field contains the number of bytes which follow in this descriptor
structure. The value of this field does not include the length field itself. If this object entry is
empty, then the entry_specific_information field does not exist; the length field shall be set to
the appropriate size, which may or may not include the child_list_ID and object_ID fields.

The entry_type field indicates what kind of entry this is. The values for entry_type are
defined in the same manner as the list_type fields for object lists; there is a range for general
definitions, and a range for subunit-type-specific definitions.

For details on subunit-dependent entry_type definitions, please refer to the appropriate
subunit specification.

The attributes field is the same as defined for the object list attributes above.

The object_ID field contains a value which uniquely identifies this object within a certain
scope, using the following general rules:

a) Object ID values must be unique within their list.

b) Additional conditions on object ID uniqueness may be defined by a particular type of subunit. For
details, please refer to the appropriate subunit specification.

c) The object ID does NOT necessarily indicate the position of this object in the object list. In some
lists, the object number may be the same as the object position, but this is not guaranteed or required
by the model.

The list owner (unit or subunit) which manages the list shall be responsible for ensuring
object ID uniqueness according to these rules. If a controller attempts to set an object ID to
a value which conflicts with an existing object ID within this scope, the list owner shall
REJECT the operation. If an object ID assignment is accepted, then the list owner shall not
change it.

The General Object Entry Descriptor
address offset contents

0016 descriptor_length
0116

0216 entry_type
0316 attributes
0416 child_list_ID

:
:
: object_ID
:
:
: size_of_entry_specific_information
:
:
: entry_specific_information
:

entry_type Value Assignment Ranges
range of values entry definition

0016 - 7F16 general definitions
8016 - FF16 subunit-type dependent

AV/C Digital Interface Command Set General Specification, Rev. 3.0 April 15, 1998, 1998003

Page 28 Copyright  1996-1998, 1394 Trade Association. All rights reserved.

The number of bytes used to specify the object_ID is defined in the subunit identifier
descriptor. All objects within a list shall have the same number of bytes for their ID values.

The child_list_ID field holds the list_ID of the child list associated with this entry. If the
object does not have a child list, then the has_child_ID bit of the attributes will be set to 0,
and this field shall not exist in the structure. The general model defines an object as having
at most one child_list_ID field. Normally, this means that the object has a single child list,
which indicates a relationship between the object and all of the items in the list.

If a particular technology requires that an object be able to have more than one child list
directly associated with it, then a subunit-specific list type can be defined to satisfy this
requirement. Each entry in the list will represent a child of the object which owns the list.

For an example of this concept, please refer to the diagram presented below.

The size_of_entry_specific_information field specifies the number of bytes used for the
following entry_specific_information field. The size field is two bytes, and is NOT included in
this calculation.

The entry_specific_information area will have a format and contents specific to the type of
object being referenced.

The following diagram illustrates the rules regarding object ID assignments and the support
of multiple child lists from one object:

April 15, 1998, 1998003 AV/C Digital Interface Command Set General Specification, Rev. 3.0

Copyright  1996-1998, 1394 Trade Association. All rights reserved. Page 29

A1

A2

A3

A4

B1

B2

B3

A5

A6

A7

B4

B5

X1

X2

X3

C1

C9

C7

C2

A1

A2

A3

A4

Z1

Z2

Z3

Z1

Z2

Z3

root

root

root

hierarchy

hierarchy

hierarchy

A1

Legend for
this example:

list_type object_ID

The object ID does not
necessarily indicate the
position of the object in the
list.

The objects in these root
lists may have multiple child
lists, so they use subunit-
specific lists to hold the child
list ID values. In this
example, object X2 has two
child lists. It uses a list to
hold two objects (C7 and C2),
each of which point to one of
the child lists.

The objects in this root list
have only zero or one child
list.

A lone root list is a
hierarchy.

The object ID must be unique
within a list.

8 . 4 O b j e c t R e f e r e n c e s

When working with objects and object lists, controllers will need to specify the particular
object(s) they are interested in accessing. In some situations, the only way a controller can
indicate which object it wants is by specifying its position in a list. This is the normal way of
stepping through a list to examine objects that the controller has not seen before.

AV/C Digital Interface Command Set General Specification, Rev. 3.0 April 15, 1998, 1998003

Page 30 Copyright  1996-1998, 1394 Trade Association. All rights reserved.

Because we specify that object ID values are not necessarily the same as their position in a
list, the object ID is another useful way to refer to an object. This would be necessary in
those cases where a list is dynamic, which would result in some objects changing their
position.

To address these two types of situations, we define two ways of referring to an object in a
list: the Object Position Reference and the Object ID Reference.

8 . 4 . 1 O b j e c t P o s i t i o n R e f e r e n c e

The object position reference indicates the position of the desired object. The first entry in a
list has position value zero. The format is as follows:

8 . 4 . 2 O b j e c t I D R e f e r e n c e

The object ID reference indicates the object ID of the desired object. The format is as follows:

The number of bytes used to specify the object_ID is defined in the subunit identifier
descriptor. Refer to the subunit-specific list descriptions for details. All objects maintained
by the subunit shall have the same number of bytes for their ID values.

8 . 5 P a r s i n g a n d N a v i g a t i n g t h e G e n e r a l A V / C D e s c r i p t o r
S t r u c t u r e s (I n f o r m a t i v e)

This section provides some background information for controllers, to illustrate the design
strategies behind the AV/C descriptor mechanism. Understanding these strategies helps
controllers to parse and navigate through structures even though the controllers may not
have full knowledge of their contents.

8 . 5 . 1 E n d i a n - n e s s

Structures and command frames are always defined with the most significant byte (MSB) of
multi-byte fields at the lowest address offset or operand in the structure or command frame.
The most significant bit (msb) of a field is at the highest bit position.

8 . 5 . 2 V a r i a b l e L e n g t h F i e l d s W i t h i n D a t a S t r u c t u r e s

Most descriptor structures (subunit identifier descriptor, object lists, object entries within
lists, etc.) contain multi-byte fields inside of them, and many of these fields can have a
variable length. All of these variable-length fields will be preceded by a field which indicates
their length. Note that the length field specifies the number of bytes for the following field;
the length value does NOT include itself in this calculation.

address offset contents
0016 object_position (MSB)

:
: object_position (LSB)

address offset contents
0016 object_ID (MSB)

:
:
: object_ID (LSB)

April 15, 1998, 1998003 AV/C Digital Interface Command Set General Specification, Rev. 3.0

Copyright  1996-1998, 1394 Trade Association. All rights reserved. Page 31

An example of this concept is the manufacturer_dependent_information field in the subunit
identifier descriptor. This field is preceded by the manufacturer_dependent_length field,
which specifies the number of bytes used for the manufacturer_dependent_information field
which follows.

8 . 5 . 2 . 1 I n d i c a t i n g V a r i a b l e v s . F i x e d N u m b e r o f B y t e s i n D i a g r a m s
When the structure diagram for a multi-byte field contains bytes whose entry is noted as “:”,
then the field contains a variable number of bytes. The specification of the field will indicate
how many bytes.

When the structure diagram of a multi-byte field has a value specified for each byte, then
this field has exactly that number of bytes. The address or address offset of these fields
within the operand may be specified as “:”, because the addresses will depend on prior
variable-length operands in the structure.

The following diagram illustrates this concept:

This example illustrates a command frame, with the following attributes:

field A - fixed length (1 byte)
field B - fixed length (2 bytes)
field C - variable length, where field C would be further documented as:

In field C:

field C-1 - fixed length (2 bytes)
field C-2 - fixed length (1 byte)
field C-3 - variable length, determined by length_of_field_C-3

The boundaries of operands in command frames, or fields in data structures, are denoted by
solid lines.

Descriptor data structures follow this same model, but instead of specifying “opcode” and
“operand[x]”, the labels for fields are “address” and “address offset”.

msb lsb

opcode COMMAND OPCODE (XX16)

operand[0] field A

operand[1] field B

operand[2] :

operand[3] field C
:

field C description
address offset contents

0016 field C-1
0116

0216 field C-2
0316 length_of_field_C-3
0416 field C-3

:

AV/C Digital Interface Command Set General Specification, Rev. 3.0 April 15, 1998, 1998003

Page 32 Copyright  1996-1998, 1394 Trade Association. All rights reserved.

8 . 5 . 3 T h e L e n g t h o f O b j e c t E n t r y D e s c r i p t o r s

The normal mechanism for indicating the size of a variable length field, as described above,
is to precede the field with a length indicator (usually one byte for strings, and two bytes
for most other fields). The one exception to this rule is for object entry descriptors.

Object descriptors are embedded within list structures, as shown in the general object list
structure described above. The first field inside of each object entry descriptor is its length
(the length field is two bytes). The reason for this exception has to do with the READ
DESCRIPTOR command.

The READ DESCRIPTOR command allows the controller to read an entire descriptor in one
action (assuming that both the controller and target have the capacity to transfer the
required number of bytes in one operation). Object descriptors are treated as complete
entities which can be read by specifying the object, such as by its position in a list, or by its
ID, etc.

When a controller reads an object descriptor structure, the controller must be able to begin
navigating through the structure. If the length field is NOT included in the structure, then
the controller has no way of knowing how to begin parsing.

This model is consistent with all descriptor structures (subunit identifier, object list, etc.).
All descriptors begin with their length field as the first entry in the structure. Object
descriptors are unique because they are embedded within object list descriptors.

Note that the length field inside of all descriptor structures indicates the number of bytes
which follow in the rest of the structure; the length field does NOT include itself in this
calculation.

8 . 5 . 4 E x t e n d e d D a t a S t r u c t u r e s

The set of data structures which conform to a certain version of the AV/C descriptor
mechanism are identified by their generation_ID. This value is defined in the subunit
identifier descriptor, and specifies that all structures maintained by the subunit conform to
the descriptor version indicated.

First generation descriptors shall only be extended in a backward-compatible manner, by
adding new fields to the end of previously-existing fields. When controllers which understand
only first-generation descriptors are parsing second- and later generation descriptors, they
must be aware that the descriptor_length field MAY indicate a value which is larger than the
descriptor are they can decode. In these circumstances, controllers must not assume that an
error condition has occurred; rather, they should assume that the descriptor has been
extended.

The following diagram illustrates the navigation rules described in 8.5.3 and 8.5.4. In this
example, the subunit identifier descriptor structure is illustrated:

April 15, 1998, 1998003 AV/C Digital Interface Command Set General Specification, Rev. 3.0

Copyright  1996-1998, 1394 Trade Association. All rights reserved. Page 33

descriptor_length

generation_ID

size_of_list_ID

size_of_object_ID

size_of_object_position

number_of_root_object_lists (n)

root_object_list_ID_0

root_object_list_ID_n - 1

subunit_dependent_length

subunit_dependent_information

manufacturer_dependent_length

manufacturer_dependent_information

• • • • •

extended information

length = n *
size_of_list_ID

AV/C Digital Interface Command Set General Specification, Rev. 3.0 April 15, 1998, 1998003

Page 34 Copyright  1996-1998, 1394 Trade Association. All rights reserved.

8 . 6 R u l e s f o r R e s e r v e d F i e l d s

This section clarifies the rules which have always been in effect regarding how reserved
fields shall be treated in command parameters and data structures.

Unless otherwise specified (see note below), command parameters and data structure fields
marked as “reserved” or “reserved for future specification” shall be set to zero by controllers
on input to a target, and by targets on output to controllers.

For input operands of commands, targets shall NOT ignore fields that were reserved when
the target was implemented. Rather, the target shall examine the reserved fields; if any of
them are specified, then the target shall reject the command with a NOT IMPLEMENTED
response.

On output data structures or parameters of commands, controllers shall ignore fields that
were reserved when the controller was implemented. These rules exist to allow future
extension of the specification while retaining compatibility with existing products.

NOTE: In some instances, reserved command operands or data structure fields may be specified as
non-zero values. These cases will be clearly indicated in the specification. Controllers and targets
shall deal with them in the same manner as defined above.

April 15, 1998, 1998003 AV/C Digital Interface Command Set General Specification, Rev. 3.0

Copyright  1996-1998, 1394 Trade Association. All rights reserved. Page 35

9 . U n i t c o m m a n d s

Unit commands are those that are addressed to an AV device implemented as a unit
architecture at a Serial Bus node. Unit commands are identified by a subunit_type value of
1F16 and a subunit_ID value of seven. Table 8.6-1 below summarizes the AV/C unit
commands.

 Table 8.6-1 — Unit commands

A dash in the support level column indicates that the command is not defined for the ctype
value CONTROL, STATUS or NOTIFY, indicated. The specific operand formats and
corresponding response frame formats are described for each of the commands in the clauses
that follow.

9 . 1 C H A N N E L U S A G E c o m m a n d

The CHANNEL USAGE status command can be used to find out which AV unit, if any, is
using a particular IEEE 1394 isochronous channel.

Using a channel means that one of the AV unit’s oPCRs indicates that there exists a
connection which uses this channel.

For the CHANNEL USAGE status command, it is permissible to use the broadcasting
node_ID.

NOTE: When using the broadcasting node-ID, this command shall only generate a broadcast on one
particular bus. Pending the definition of the addressing scheme in a bridged environment, a controller
shall use the enumerated bus-ID value of the bus for which the command is intended as part of the

Support level
(by ctype)

Opcode Value C S N Comments

CHANNEL USAGE 1216 – R R Report information on IEEE
1394 isochronous channel usage

CONNECT 2416 O O R Establish connections for
unspecified streams between
plugs and subunits

CONNECT AV 2016 O O O Establish AV connections
between plugs and subunits

CONNECTIONS 2216 – O – Report connection status

DIGITAL INPUT 1116 O O – Make or break broadcast Serial

DIGITAL OUTPUT 1016 O O – Bus connections

DISCONNECT 2516 O – – Break unspecified stream
connections between plugs and
subunits

DISCONNECT AV 2116 O – – Break AV connections between
plugs and subunits

INPUT PLUG SIGNAL FORMAT 1916 O R O Set or report signal formats for

OUTPUT PLUG SIGNAL FORMAT 1816 O R O Serial Bus plugs

SUBUNIT INFO 3116 – M – Report subunit information

UNIT INFO 3016 – M – Report unit information

AV/C Digital Interface Command Set General Specification, Rev. 3.0 April 15, 1998, 1998003

Page 36 Copyright  1996-1998, 1394 Trade Association. All rights reserved.

broadcasting node-ID. This also holds in case the command is intended for the bus to which the
controller is attached. Only in case no bus-ID has been assigned, it is allowed to use the bus-ID value
3FF16 as part of the broadcasting node-ID.

The CHANNEL USAGE status command has the format as illustrated in Figure 9-1 below.

Figure 9-1 — CHANNEL USAGE status command format

Operand[0] denotes the isochronous channel which the target must check, to see if it is using
that channel.

The CHANNEL USAGE status response has the format as illustrated in Figure 9-2 below.

Figure 9-2 — CHANNEL USAGE status response format

If in the STATUS response frame operand[1] through operand[3] are NOT all FF16, it
indicates that the target identified by operand[1] and operand[2] is using the channel
indicated in operand[0], through the oPCR identified by operand[3]. Operand[1] contains the
most significant byte of the node_ID.

If in the STATUS response frame operand[1] through operand[3] ARE all FF16, it indicates
that the target that returned the response is not using the channel indicated in operand[0].

In case the CHANNEL USAGE status command was broadcast (as opposed to unicast), the
response obligation on this command exists only for those targets that use the channel.
Because at most one target can meet this condition, at most one response frame will be
returned and that response shall have operand[1] through operand[3] NOT all equal to FF16.

In case the CHANNEL USAGE status command was unicast, the target shall return a
response with operand[1] through operand[3] indicating whether or not the target is using
the channel.

The CHANNEL USAGE command may also be used as a notify command. The notify
command has the same syntax and meaning for its operands as the CHANNEL USAGE
status command.

For the CHANNEL USAGE notify command, it is permissible to use the broadcasting
node_ID.

msb lsb

opcode CHANNEL USAGE (1216)

operand[0] IEEE 1394 isochronous channel

operand[1]

operand[2] FF16

operand[3]

msb lsb

opcode CHANNEL USAGE (1216)

operand[0] IEEE 1394 isochronous channel

operand[1] node_ID

operand[2]

operand[3] oPCR number

April 15, 1998, 1998003 AV/C Digital Interface Command Set General Specification, Rev. 3.0

Copyright  1996-1998, 1394 Trade Association. All rights reserved. Page 37

In case the CHANNEL USAGE notify command was unicast and the target is not using the
channel, it shall return a REJECTED response. Otherwise, it shall return an INTERIM
response with operand[1] through operand[3] NOT all equal to FF16. If an INTERIM
response has been returned, a CHANGED response shall be returned with operand[1]
through operand[3] all equal to FF16 once the target stops using the specified channel.

In case the CHANNEL USAGE notify command was broadcast, the response obligation on
this command exists only for those targets that use the channel. Because at most one target
can meet this condition, at most one INTERIM response frame will be returned with
operand[1] through operand[3] NOT all equal to FF16. If an INTERIM response has been
returned, a CHANGED response shall be returned with operand[1] through operand[3] all
equal to FF16 once the target stops using the specified channel.

9 . 2 C O N N E C T c o m m a n d

An AV subunit has source and destination plugs. A source plug outputs one stream from the
AV subunit and a destination plug inputs one stream into the AV subunit.

An AV unit has Serial Bus input and output plugs to model the Serial Bus interface of the
AV unit. An AV unit can have at most one Serial Bus interface and thereby at most one node
ID on the Serial Bus. A Serial Bus input plug inputs one stream from the Serial Bus
interface into the AV unit and a Serial Bus output plug outputs one stream from the AV unit
to the Serial Bus interface.

An AV unit also has external input and output plugs to model external interfaces of the AV
unit other than Serial Bus. An external input plug inputs one stream from an external
interface into the AV unit and an external output plug outputs one stream from the AV unit
to one external interface.
The CONNECT control command establishes a connection within an AV Unit between:

a source plug of an AV subunit and a destination plug of an AV subunit to carry a stream that flows
inside the AV unit.

a source plug of an AV subunit and a Serial Bus or external output plug to carry a stream that flows
from the AV subunit to the Serial Bus or external interface.

a Serial Bus or external input plug and a destination plug of an AV subunit to carry a stream that flows
from the Serial Bus or external interface to the AV subunit.

These connections are independent from the type of data (audio, video, data, ...) inside the
stream which they carry. These streams are named “unspecified streams.”

msb lsb

opcode CONNECT (2416)

operand[0] 3F16 lock perm

operand[1] source_subunit_type source_subunit_ID

operand[2] source_plug

operand[3] destination_subunit_type destination_subunit_ID

operand[4] destination_plug

Figure 9-3 — CONNECT control command

AV/C Digital Interface Command Set General Specification, Rev. 3.0 April 15, 1998, 1998003

Page 38 Copyright  1996-1998, 1394 Trade Association. All rights reserved.

The subunit_type and subunit_ID fields for both the source and destination plugs have the
same syntax and meaning as an AV/C address (see section 5.3.3).

In case the value of source and destination subunit_type and subunit_ID are extended in the
above control command, the frame will look as follows:

Figure 9-4 — CONNECT control command with extended subunit_type and extended
subunit_ID

For the example above, the source and destination subunit_type and subunit_ID values have
been extended only once.

The source_plug and destination_plug fields are defined by the table below:

When the stream flows from or to one of the AV unit’s Serial Bus or external plugs, the
subunit_type field shall have a value of 1F16 (AV unit) and the subunit_ID field shall have a
value of 7. In this case, the source_plug and destination_plug fields identify either a Serial
Bus or an external plug according to Table 9.2-1 below:

Table 9.2-1 — Serial Bus and external plug numbers

msb lsb

opcode CONNECT (2416)

operand[0] 3F16 lock perm

operand[1] source_subunit_type = IE16 source_subunit_ID = 516

operand[2] extended_source_subunit_type

operand[3] extended_source_subunit_ID

operand[4] source_plug

operand[5] destination_subunit_type = IE16 destination_subunit_ID = 516

operand[6] extended_destination_subunit_type

operand[7] extended_destination_subunit_ID

operand[8] destination_plug

value source plug destination plug

0 - 1E16 Source plug 0 - 30 Destination plug 0 - 30
1F16 - FC16 Reserved for future specification Reserved for future specification

FD16 Reserved for future specification Multiple plugs
FE16 Invalid Invalid
FF16 Any available source plug Any available destination plug

value source plug destination plug

0 - 1E16 Serial Bus iPCR[0] - iPCR[30] Serial Bus oPCR[0] - oPCR[30]
1F16 - 7E16 Reserved for future specification Reserved for future specification

7F16 Any available Serial Bus plug
iPCR[x]

Any available Serial Bus plug
oPCR[x]

8016 - 9E16 External input plug 0 - 30 External output plug 0 - 30
9F16 - FC16 Reserved for future specification Reserved for future specification

FD16 Reserved for future specification Multiple plugs
FE16 Invalid Invalid
FF16 Any available External input plug Any available External output plug

April 15, 1998, 1998003 AV/C Digital Interface Command Set General Specification, Rev. 3.0

Copyright  1996-1998, 1394 Trade Association. All rights reserved. Page 39

The PLUG INFO status command may be used to determine the number of Serial Bus and
external plugs of an AV unit.

Note that overlaying a connection with another connection between the same source plug
and another destination plug resulting in a one-to-many flow of the same stream may or
may not be allowed, depending on the capabilities of the target.

The lock bit pertains to the connection between the source and destination plugs as
indicated in the CONNECT command. If the lock bit in the CONNECT command is set to
one to establish a connection between a source and a destination plug, any subsequent
CONNECT command that would result in a disruption of the stream flowing between these
plugs shall return a REJECTED response. This rule shall remain valid until a subsequent
DISCONNECT command has been received by the target for that source plug.

The perm bit is ignored in a CONNECT control command.

The CONNECT command may also be used as a status command to determine the current
state of the connections within an AV unit. The CONNECT status command is used to
request the identity of the source plug that is connected to a given destination plug, or the
identity of the destination plug for a given source plug. The two formats for the
corresponding CONNECT status commands are shown in Figure 9-5 and Figure 9-6 below,
and have the same meaning as the corresponding fields of the CONNECT control command.

Figure 9-5 — CONNECT status command format for a source plug

The CONNECT status response frame has the same format and the same meaning for all
fields as the CONNECT control command except for the perm field.

Except for the perm bit, the CONNECT status response frame contains exact copies of the
CONNECT operands that were used to establish the connection. This includes the extended
source and destination subunit_type and subunit_ID if they were used.

The perm bit in a CONNECT status response frame indicates whether a connection is
permanent (value 1) or not (value 0). Permanent connections within an AV unit are

msb lsb

opcode CONNECT (2416)

operand[0] FF16

operand[1] source_subunit_type source_subunit_ID

operand[2] source_plug

operand[3] FF16

operand[4] FE16

msb lsb

opcode CONNECT (2416)

operand[0] FF16

operand[1] FF16

operand[2] FE16

operand[3] destination_subunit_type destination_subunit_ID

operand[4] destination_plug

Figure 9-6 — CONNECT status command format for a destination plug

AV/C Digital Interface Command Set General Specification, Rev. 3.0 April 15, 1998, 1998003

Page 40 Copyright  1996-1998, 1394 Trade Association. All rights reserved.

connections that cannot be altered by the CONNECT control command or deleted by the
DISCONNECT command, in which case a REJECTED response shall be returned.

In case there is no source plug connected to a destination plug, the source_plug field of the
CONNECT status response frame shall indicate FE16 (invalid).

In case there is no destination plug connected to a source plug, the destination_plug field of
the CONNECT status response frame shall indicate FE16 (invalid).

In case there are multiple destination plugs connected to a source plug, the destination_plug
field of the CONNECT status response frame shall indicate FD16 (multiple plugs).

The CONNECT command may also be used as a notify command. The notify command has
the same syntax as the CONNECT status command. A notification shall be returned by the
target to the controller that issued the notify command in case a connection involving the
plug, as indicated in the notify command, changes. These changes shall include establishing
a connection to the plug, deleting a connection from the plug, and connecting the plug to
another plug.

The notify responses (INTERIM and CHANGED) have the same format as the CONNECT
status response frame and indicate the current status of the plug for which the notification
was requested. If the plug is still connected, the plug to which it is connected shall be
indicated. If the plug is no longer connected, the source or destination plug field shall be
indicated as invalid (plug field value FE16).

9 . 3 C O N N E C T A V c o m m a n d

The CONNECT AV control command is used to establish audio/video connections between
subunits and plugs.

 Figure 9-7 — CONNECT AV control command format for audio/video stream

The four fields of operand[0], video_source_type, audio_source_type, video_dest_type and
audio_dest_type, encode the meaning of the four following source and destination identifying
fields, as described in the table below.

If the source or destination type is zero, the corresponding source or destination operand is a
subunit address, encoded as described in 5.3.3. The value of the source or destination type
may be extended, and one or more bytes will be added accordingly. For an example, refer to

msb lsb

opcode CONNECT AV (2016)

operand[0] video_source_type audio_source_type video_dest_type audio_dest_type

operand[1] video_source

operand[2] audio_source

operand[3] video_destination

operand[4] audio_destination

Value Source or destination type

0 Subunit

1 Ignore

2 Serial Bus or external plug

3 Reserved

April 15, 1998, 1998003 AV/C Digital Interface Command Set General Specification, Rev. 3.0

Copyright  1996-1998, 1394 Trade Association. All rights reserved. Page 41

the CONNECT control command. A source or destination value of FF16 is a special case and
indicates that the AV device may select any appropriate, available subunit.

If the source or destination type is one, the corresponding source or destination operand is
ignored. This value may be used to leave existing connections unchanged or it may be used if
the AV unit does not implement the connection type. For example, in a CONNECT AV
control command sent to an AV unit that had only audio recording capabilities, it would be
appropriate to specify a value of one for both video_source_type and video_dest_type.

If the source or destination type is two, the corresponding source or destination operand
represents a Serial Bus or an external plug, as encoded by the table below:

NOTE: In the preceding, some of the encoded values permit the AV device to select, at its option, an
available subunit, Serial Bus or external plug. The set of plugs from which the device may choose is
further limited by what is appropriate. For example, a dual-deck VCR might have one deck capable of
recording SD signals and another capable of recording both HD and SD signals. If a Serial Bus input
plug is active and configured for HD signals, a CONNECT AV control command for an audio/video
stream that specified “any available” subunit would result in the natural connection to the deck
capable of recording HD signals. On the other hand, if a Serial Bus input plug is active and configured
for SD signals, an arbitrary connection could be established with either deck. In cases where more
than one choice is possible, it is expected that the determination will be vendor-dependent.

In addition to its use as a control command, the CONNECT AV command may also be used
as a status command to determine the current state of internal A/V connections for a unit or
subunit. The form is shown in Figure 9-8 below.

 Figure 9-8 — CONNECT AV status command format for audio/video stream

The fields video_dest_type, audio_dest_type, video_destination and audio_destination are
used as previously described for the CONNECT AV command.

The response frame returned for the CONNECT AV status command has the same format
as described in Figure 9-7. This includes fields for extended subunit type if used.

In case there is no source plug connected to the destination plug indicated in the CONNECT
AV status command, the video_source and audio_source fields shall have the value FF16
(invalid), and the video_source_type and audio_source_type fields shall both have the value
1 (ignore).

Value Plug

0 — 1E16 Serial Bus plug zero — 30

1F16 — 7E16 Reserved for future specification

7F16 Any available Serial Bus plug

8016 — 9E16 External plug zero — 30

9F16 — FE16 Reserved for future specification

FF16 Any available external plug

msb lsb

opcode CONNECT AV (2016)

operand[0] F16 video_dest_type audio_dest_type

operand[1] FF16

operand[2] FF16

operand[3] video_destination

operand[4] audio_destination

AV/C Digital Interface Command Set General Specification, Rev. 3.0 April 15, 1998, 1998003

Page 42 Copyright  1996-1998, 1394 Trade Association. All rights reserved.

The CONNECT AV command may also be used as a notify command. The notify command
has the same syntax as the CONNECT AV status command. A notification shall be
returned by the target to the controller that issued the notify command in case a connection
involving the destination as indicated in the notify command changes. These changes shall
include establishing a connection to the destination, deleting a connection from the
destination, and connecting the destination to another source. The notify response has the
same format as the CONNECT AV response frame.

9 . 4 C O N N E C T I O N S c o m m a n d

The CONNECTIONS status command is used to inquire the state of all connections for
unspecified streams. The format of the CONNECTIONS status command is illustrated by
Figure 9-9 below.

 Figure 9-9 — CONNECTIONS status command format

The response frame returned after a CONNECTIONS status command is variable in length
and depends upon the number of connections established. The response frame has the
format defined by Figure 9-10 below.

The total_connections field specifies the number of five-byte connection descriptors returned
in the operands that follow. The value of n is determined by 5 * total_connections.

The format of each connection descriptor is identical to operand[1] through operand[4] of the
CONNECT control command. For a connection that includes an extended subunit_type or
subunit_ID, these addresses may change depending on the number of extended fields.

msb lsb

opcode CONNECTIONS (2216)

operand[0] FF16

msb lsb

opcode CONNECTIONS (2216)

operand[0] total_connections

operand[1] 3F16 lock perm

operand[2] connection[0].source

operand[3]

operand[4] connection[0].destination

operand[5]

… connection[1] — connection[total_connections - 2]

operand[n-4] 3F16 lock perm

operand[n-3] connection[total_connections - 1].source

operand[n-2]

operand[n-1] connection[total_connections - 1].destination

operand[n]

 Figure 9-10 — CONNECTIONS response format

April 15, 1998, 1998003 AV/C Digital Interface Command Set General Specification, Rev. 3.0

Copyright  1996-1998, 1394 Trade Association. All rights reserved. Page 43

9 . 5 D I G I T A L I N P U T c o m m a n d

The DIGITAL INPUT control command permits an AV unit to establish a broadcast input
connection according to its own preferences. Figure 9-11 below illustrates the format of the
command.

When the DIGITAL INPUT command is issued with a ctype value of CONTROL, the
connection_state field specifies whether the AV unit is expected to establish (7016) or break
(6016) a broadcast input connection.

The DIGITAL INPUT command, with a ctype value of STATUS, may also be used to
determine the current input broadcast connection state of the unit. In this case, operand[0]
is set to FF16 when the status command is issued and is updated to the current
connection_state when the STABLE response frame is returned.

9 . 6 D I G I T A L O U T P U T c o m m a n d

The DIGITAL OUTPUT control command permits an AV unit to establish a broadcast
output connection according to its own preferences. Figure 9-12 below illustrates the format
of the command.

 Figure 9-12 — DIGITAL OUTPUT command format

When the DIGITAL OUTPUT command is issued with a ctype value of CONTROL, the
connection_state field specifies whether the AV unit is expected to establish (7016) or break
(6016) a broadcast output connection. The AV unit shall be responsible to allocate or
deallocate the necessary isochronous resources, e.g., bandwidth and channel number, and to
program an output PCR as appropriate.

The DIGITAL OUTPUT command, with a ctype value of STATUS, may also be used to
determine the current output broadcast connection state of the unit. In this case, operand[0]
is set to FF16 when the status command is issued and is updated to the current
connection_state when the STABLE response frame is returned.

9 . 7 D I S C O N N E C T c o m m a n d

The DISCONNECT control command removes a connection between a destination and a
source plug for an unspecified stream as described in the CONNECT control command, even
if the connection was established with the lock bit set to one. In the case where multiple
connections are overlaid on the same source plug, all connections will be deleted.

The format of the DISCONNECT control command is illustrated by Figure 9-13 below.

msb lsb

opcode DIGITAL INPUT (1116)

operand[0] connection_state

 Figure 9-11 — DIGITAL INPUT command format

msb lsb

opcode DIGITAL OUTPUT (1016)

operand[0] connection_state

AV/C Digital Interface Command Set General Specification, Rev. 3.0 April 15, 1998, 1998003

Page 44 Copyright  1996-1998, 1394 Trade Association. All rights reserved.

 Figure 9-13 — DISCONNECT command format

The meaning of all fields are identical to the fields as described in the CONNECT control
command. This includes the extended source and destination subunit_type and subunit_ID
if they are used.

9 . 8 D I S C O N N E C T A V c o m m a n d

The DISCONNECT AV control command is used to remove audio/video connections between
subunits and plugs. The value of operand[0] is other than FF16 and the syntax is shown in
Figure 9-14 below.

 Figure 9-14 — DISCONNECT AV command format

The field definitions and their uses for DISCONNECT AV are identical to the field
definitions given in Figure 9-7 for the CONNECT AV command. This includes the extended
source and destination subunit_type and subunit_ID if they are used.

9 . 9 I N P U T P L U G S I G N A L F O R M A T c o m m a n d

The INPUT PLUG SIGNAL FORMAT control command is used to configure a specified
Serial Bus input plug to receive data in the designated signal format. The syntax of the
INPUT PLUG SIGNAL FORMAT control command is shown in Figure 9-15 below.

 Figure 9-15 — INPUT PLUG SIGNAL FORMAT control command format

The fields fmt and fdf are as defined in IEC 61883, Digital Interface for Consumer Electronic
Audio/Video Equipment. Together they specify the desired signal format for the Serial Bus
input plug identified by plug.

msb lsb

opcode DISCONNECT (2516)

operand[0] FF16

operand[1] source_subunit_type source_subunit_ID

operand[2] source_plug

operand[3] destination_subunit_type destination_subunit_ID

operand[4] destination_plug

msb lsb

opcode DISCONNECT AV (2116)

operand[0] video_source_type audio_source_type video_dest_type audio_dest_type

operand[1] video_source

operand[2] audio_source

operand[3] video_destination

operand[4] audio_destination

msb lsb

opcode INPUT PLUG SIGNAL FORMAT (1916)

operand[0] plug

operand[1] 2 fmt

operand[2] (most significant byte)

operand[3] fdf

operand[4] (least significant byte)

April 15, 1998, 1998003 AV/C Digital Interface Command Set General Specification, Rev. 3.0

Copyright  1996-1998, 1394 Trade Association. All rights reserved. Page 45

The INPUT PLUG SIGNAL FORMAT status command is used to inquire which signal
format a specified Serial Bus input plug is configured to receive. The syntax of the INPUT
PLUG SIGNAL FORMAT status command is shown in Figure 9-16 below.

The plug field specifies which one of the 31 Serial Bus input plugs, zero through 1E16, is
referenced.

If the status command is accepted, the response frame has the same format as the INPUT
PLUG SIGNAL FORMAT control command illustrated by Figure 9-15 above. The fields fmt
and fdf are as previously defined and together they specify the signal format that the Serial
Bus input plug identified by plug is configured to receive.

The INPUT PLUG SIGNAL FORMAT command may also be used as a notify command.
The notify command has the same syntax as the status command. A notification shall be
returned by the target to the controller that issued the notify command in case the format of
the data that the Serial Bus input plug is receiving changes. The notify response has the
same format as the status response frame.

9 . 1 0 O U T P U T P L U G S I G N A L F O R M A T c o m m a n d

The OUTPUT PLUG SIGNAL FORMAT control command is used to configure a specified
Serial Bus output plug to transmit data in the designated signal format. The syntax of the
OUTPUT PLUG SIGNAL FORMAT control command is shown in Figure 9-17 below.

 Figure 9-17 — OUTPUT PLUG SIGNAL FORMAT control command format

The fields fmt and fdf are as defined in IEC 61883, Digital Interface for Consumer Electronic
Audio/Video Equipment. Together they specify the desired signal format for the Serial Bus
output plug identified by plug.

The OUTPUT PLUG SIGNAL FORMAT status command is used to inquire which signal
format a specified Serial Bus output plug is configured to transmit. The format of the
OUTPUT PLUG SIGNAL FORMAT command is illustrated by Figure 9-18 below.

msb lsb

opcode INPUT PLUG SIGNAL FORMAT (1916)

operand[0] plug

operand[1]

... FF16

operand[4]

Figure 9-16 — INPUT PLUG SIGNAL FORMAT status command format

msb lsb

opcode OUTPUT PLUG SIGNAL FORMAT (1816)

operand[0] plug

operand[1] 2 fmt

operand[2] (most significant byte)

operand[3] fdf

operand[4] (least significant byte)

AV/C Digital Interface Command Set General Specification, Rev. 3.0 April 15, 1998, 1998003

Page 46 Copyright  1996-1998, 1394 Trade Association. All rights reserved.

 Figure 9-18 — OUTPUT PLUG SIGNAL FORMAT status command format

The plug field specifies which of the 31 Serial Bus output plugs, zero through 1E16, is
referenced.

If the status command is accepted, the response frame has the same format as the
OUTPUT PLUG SIGNAL FORMAT control command illustrated by Figure 9-17 above. The
fields fmt and fdf are as previously defined and together they specify the signal format that
the Serial Bus output plug identified by plug is configured to transmit.

The OUTPUT PLUG SIGNAL FORMAT command may also be used as a notify command.
The notify command has the same syntax as the status command. A notification shall be
returned by the target to the controller that issued the notify command in case the format of
the data that the Serial Bus output plug is transmitting changes. The notify response has
the same format as the status response frame.

9 . 1 1 S U B U N I T I N F O c o m m a n d

The SUBUNIT INFO status command is used to obtain information about the subunit(s) of
an AV unit. The format of the SUBUNIT INFO status command is illustrated by Figure 9-
19 below.

 Figure 9-19 — SUBUNIT INFO status command format

The page field value specifies which part of the subunit table is to be returned. An AV unit
may implement up to 32 bytes of information in eight pages.

The extension_code field shall have a value of seven.

If the status command is accepted, the response frame returned has the structure
illustrated by Figure 9-20 below.

msb lsb

opcode OUTPUT PLUG SIGNAL FORMAT (1816)

operand[0] plug

operand[1]

... FF16

operand[4]

msb lsb

opcode SUBUNIT INFO (3116)

operand[0] 0 page 0 extension_code

operand[1]

… FF16

operand[4]

April 15, 1998, 1998003 AV/C Digital Interface Command Set General Specification, Rev. 3.0

Copyright  1996-1998, 1394 Trade Association. All rights reserved. Page 47

The page_data returned is the four entries from the subunit table for the page requested.
The subunit table is an array of byte entries; each entry has the format defined by Figure 9-
21 below:

 Figure 9-21 — Subunit table entry

The subunit_type field of each entry is as defined in Table 5.3-1. The extension of
subunit_type and max_subunit_ID follows the example explained in the CONNECT control
command; so, a subunit table entry may be more than one byte in length.

The max_subunit_ID field is the count of subunits of subunit_type implemented by the AV
unit, less one.

The subunit entries are not required to be in any particular order but are required to be
uniquely identified by subunit_type. If fewer than 32 entries are present in the subunit
table, they are terminated by a byte with the value FF16. The value of entries past the
terminating FF16 is indeterminate and should be ignored by any controller that requests
subunit information.

9 . 1 2 U N I T I N F O c o m m a n d

The UNIT INFO status command is used to obtain information that pertains to the AV unit
as a whole (distinct from subunit information, see 9.11). The format of the UNIT INFO
status command is illustrated by Figure 9-22 below:

 Figure 9-22 — UNIT INFO status command format

If the status command is accepted by the target, a response frame with the format shown by
Figure 9-23 below is returned.

msb lsb

opcode SUBUNIT INFO (3116)

operand[0] 0 page 0 extension_code

operand[1]

… page_data

operand[n]

Figure 9-20 — SUBUNIT INFO response format

msb lsb

subunit_type max_subunit_ID

msb lsb

opcode UNIT INFO (3016)

operand[0]

… FF16

operand[4]

AV/C Digital Interface Command Set General Specification, Rev. 3.0 April 15, 1998, 1998003

Page 48 Copyright  1996-1998, 1394 Trade Association. All rights reserved.

The unit_type field contains a value whose meaning is identical to those defined for
subunit_type in Table 5.3-1. Value 1C16 (vendor unique) should be returned in case none of
the other values are considered to be appropriate. The unit_type field may take value 1E16,
which means that the field is extended to the following byte. In that case, an additional
byte for extended_unit_type will be added immediately following operand[1], as shown in the
example presented in the CONNECT control command. Further extension is possible when
the value of extended_unit_type is FF16, in which case another byte will be added.

The meaning of the unit field is not defined by this specification.

The company_ID field shall contain the 24-bit unique ID obtained from the IEEE
Registration Authority Committee (RAC). It is expected that the value of company_ID
returned by the UNIT INFO status command is the same as the vendor ID in the Node
Unique ID leaf in the AV unit’s configuration ROM. The most significant part of the
company_ID is stored in operand[2] and the least significant part in operand[4].

msb lsb

opcode UNIT INFO (3016)

operand[0] 0716

operand[1] unit_type unit

operand[2] (most significant byte)

operand[3] company_ID

operand[4] (least significant byte)

 Figure 9-23 — UNIT INFO response format

April 15, 1998, 1998003 AV/C Digital Interface Command Set General Specification, Rev. 3.0

Copyright  1996-1998, 1394 Trade Association. All rights reserved. Page 49

1 0 . C o m m o n u n i t a n d s u b u n i t c o m m a n d s

This section defines commands that are applicable to an AV unit as well as a subunit
independent of the functionality that these subunits represent indicated by their
subunit_type. Table 9.12-1 below summarizes the common unit and subunit commands.

 Table 9.12-1 — Common unit and subunit commands

In the preceding table, a dash in the support level column indicates that the command is not
defined for the ctype value, CONTROL, STATUS or NOTIFY, indicated. The specific
command formats and corresponding response frame formats are described for each of the
common subunit commands in the clauses that follow.

1 0 . 1 O P E N D E S C R I P T O R c o m m a n d

The OPEN DESCRIPTOR control command is used to gain access to a certain address
space on the target. The format of the OPEN DESCRIPTOR control command is illustrated
by the figure below:

The descriptor_identifier describes which data structure is being accessed. The exact format
of this identifier will vary based on the kind of descriptor, the method of specifying the
desired descriptor, and the type of subunit which is managing that descriptor.

Support level
(by ctype)

Opcode Value C S N Comments

OPEN DESCRIPTOR 0816 O O O Gains the right to access the
descriptor

READ DESCRIPTOR 0916 O – – Reads data from the descriptor

WRITE DESCRIPTOR 0A16 O O – Writes data into the descriptor

SEARCH DESCRIPTOR 0B16 O – – Search for a specified data
pattern within the descriptor data
space

OBJECT NUMBER SELECT 0D16 O O O Selects one or more objects
using an object ID and list ID

POWER B216 O O R Control power state

RESERVE 0116 O O R Acquire or release exclusive
control of a target

PLUG INFO 0216 – O – Information about Serial Bus and
External plugs

VENDOR-DEPENDENT 0016 V V V Vendor-dependent commands

msb lsb

opcode OPEN DESCRIPTOR (0816)

operand[0] descriptor_identifier (MSB)

operand[1] :

: :

: (LSB)

: subfunction

: reserved

AV/C Digital Interface Command Set General Specification, Rev. 3.0 April 15, 1998, 1998003

Page 50 Copyright  1996-1998, 1394 Trade Association. All rights reserved.

For example, an object can be referenced by its position in a certain list, or by its unique
object ID. All of these criteria are involved in defining how a piece of information is specified
for the various DESCRIPTOR commands.

The general AV/C model defines the subunit identifier descriptor, objects and object lists as
the kinds of descriptors that are accessed through these commands. It is possible that other
types of descriptors may be defined exclusively for a particular type of subunit. Such
descriptors would also be accessed by these DESCRIPTOR commands.

The following diagrams illustrate the common descriptor_identifier types:

The descriptor_type field indicates what kind of descriptor is specified in the rest of the
identifier structure. It is encoded by the following table:

Each of the descriptor_type values in the table indicate the format and contents of the
descriptor_type_specific_reference field. For each of the descriptor types, the structure is as
follows:

1 0 . 1 . 1 S u b u n i t I d e n t i f i e r

The descriptor_type_specific_reference field does not exist (the descriptor_identifier consists of
only the descriptor_type field) because there can be only one subunit identifier descriptor for a
subunit.

1 0 . 1 . 2 O b j e c t L i s t

The descriptor_identifier for an object list specified by its ID appears as follows:

general descriptor_identifier
address offset contents

0016 descriptor_type
0116

: descriptor_type_specific_reference
:
:

descriptor_type meaning
0016 Subunit identifier descriptor
1016 Object list descriptor - specified by list ID
1116 Object list descriptor - specified by list_type
2016 Object entry descriptor - specified by object position
2116 Object entry descriptor - specified by an object ID

8016 - BF16 Subunit dependent descriptor
all others reserved for future specification

descriptor_identifier for a subunit identifier descriptor
address offset contents

0016 0016

April 15, 1998, 1998003 AV/C Digital Interface Command Set General Specification, Rev. 3.0

Copyright  1996-1998, 1394 Trade Association. All rights reserved. Page 51

As shown, the descriptor_type_specific contents for an object list consists of the desired
list_ID. All lists within the scope of a subunit shall have unique list_ID values, so there is no
need to resolve the scope any further.

The descriptor_identifier for an object list specified by its list_type is as follows:

1 0 . 1 . 3 O b j e c t E n t r y

Objects can be referenced either by their position in a specified list, or by their unique
object ID. The descriptor_identifier for an object entry depends on which of these reference
methods are being used:

The object_position field indicates the position of the target object, within the list which was
specified by the list_ID field. The value of all FF16 bytes for the object_position is reserved,
and has a special meaning when used with the WRITE DESCRIPTOR command. Please
refer to the definition of that command for details.

For the object ID reference, the descriptor_identifier is as follows:

The object_ID field indicates the unique object ID. This reference may be used when object
ID values are unique among the scope of all lists which share the same list_type value,
within the hierarchy indicated by root_list_ID.

descriptor_identifier for an object list specified by ID
address offset contents

0016 descriptor_type = 1016

0116

: list_ID
:

descriptor_identifier for an object list specified by list_type
address offset contents

0016 descriptor_type = 1116

0116 list_type

descriptor_identifier for an object entry position reference
address offset contents

0016 descriptor_type = 2016

0116 list_ID (MSB)
:
: list_ID (LSB)
: object_position (MSB)
:
: object_position (LSB)

descriptor_identifier for an object ID reference
address offset contents

0016 descriptor_type = 2116

0116 root_list_ID (MSB)
:
: root_list_ID (LSB)
: list_type
: object_ID (MSB)
: :
: :
: object_ID (LSB)

AV/C Digital Interface Command Set General Specification, Rev. 3.0 April 15, 1998, 1998003

Page 52 Copyright  1996-1998, 1394 Trade Association. All rights reserved.

WARNING: In some cases, this reference may not uniquely identify a specific object within a
hierarchy. In case one or more objects in the hierarchy indicated by the root list have the
same ID and belong to lists with the same list type, then an arbitrary object will be
addressed. This will depend on the particular technology being represented by the objects
and object lists. For one example, please refer to the DAB broadcasting system described in
Rules and Guidelines for Tuner Subunit Objects and Object Lists in the tuner subunit
specification.

1 0 . 1 . 4 D e s c r i p t o r A c c e s s S u p p o r t

While it is mandatory for a subunit which has descriptors to support the OPEN
DESCRIPTOR command, it is not mandatory for it to support that command down to the
individual OBJECT ENTRY level. In other words, it is not required that a subunit be
sophisticated enough to allow one controller to have read/write access to object 2, and a
separate controller to simultaneously have read/write access to object 7 in the same list. It
is sufficient to allow access control only at the OBJECT LIST level. If the subunit does not
support access control at the individual object entry level, then it shall return a value of 0516

in the last operand of the status command, as shown in the table of response values in the
section titled The OPEN DESCRIPTOR Status Command which begins on page 53.

For those object entries which can be modified by a controller, it is mandatory for the target
to support READ and WRITE operations of individual object entries within the object list,
once access to the entire list has been established by a controller.

If a controller intends to read or modify a single object entry, and it is able to gain access
control to that individual object entry, then it shall relinquish control of that same object
entry when it is finished. If a controller intends to add or delete an entire object entry, then
it shall first gain write access control to the entire object list.

The descriptor_identifier operand specifies which, among possibly many, of the items that the
controller wants to access. There shall be only zero or one (SUB)UNIT IDENTIFIER for a
given (sub)unit, but there may be many OBJECT LISTS, and many OBJECT ENTRIES
within each OBJECT LIST.

The subfunction operand determines the operation performed by the target, as defined by
the table below:

If the subunit which owns the descriptor must change the descriptor while it is open for read
or read/write access, then the subunit shall force the descriptor to be closed for all controllers
who have access. One example of this would be for a tuner subunit, which may have to
update a list of services that are currently available on a multiplex. If that list happens to
be open for one or more controllers, then the tuner subunit shall close the list for all of them
before it updates the list.

Subfunction Value Action
CLOSE 0016 Relinquish use of the descriptor
READ OPEN 0116 Open the descriptor for read-only access
WRITE OPEN 0316 Open the descriptor for read or write access

April 15, 1998, 1998003 AV/C Digital Interface Command Set General Specification, Rev. 3.0

Copyright  1996-1998, 1394 Trade Association. All rights reserved. Page 53

1 0 . 1 . 5 T h e O P E N D E S C R I P T O R S t a t u s C o m m a n d

OPEN DESCRIPTOR may also be used as a status command to inquire about the current
condition of the descriptor. The format of the OPEN DESCRIPTOR status command is
shown below:

The STABLE response frame returned by the subunit updates the operand indicated by the
label “operand[x]” to reflect the current access state for the descriptor specified by the
descriptor_identifier operand, as summarized below:

It is important to control access to the descriptor contents even for read-only operations,
because access to the descriptor data may require coordination between the actions of a
controller that is writing to the descriptor, and any controllers that want to read the data.

Also in the STABLE response frame, the subunit shall update the operand indicated by the
label “operand[y]” based on the value returned for “operand[x]”, as indicated below:

With the exception of bus resets, write-access rules and the time out rules described below,
the descriptor shall only be closed by the controller which opened it or by the target itself.
Thus, it will be necessary for the target to maintain the necessary information about each
controller with access. When a close request is made, the target shall verify the controller
node ID before permitting the action to proceed.

msb lsb

opcode OPEN DESCRIPTOR (0816)

operand[0] descriptor_identifier(MSB)

operand[1] :

: :

: (LSB)

operand[x] FF16

: reserved

operand[y] FF16

: FF16

Value of
“operand[x]”

Meaning

0016 The descriptor specified by descriptor_identifier is closed for
access. No controllers currently have access (either read or write).

0116 The descriptor is open for read-only access to the data by one or
more controllers, and is able to accept additional read-only open
requests.

0416 No descriptor specified by descriptor_identifier exists.
0516 Access control for individual object entries in an object list is not

supported - the controller must obtain access to the entire list.
1116 The descriptor is open for read-only access to the data, and is

unable to accept any additional read-only open requests.
3316 The descriptor is open for write access to the data. No access

(read only or read/write) by other controllers is allowed.

Value of
“operand[x]”

Value of “operand[y]”

3316 When the descriptor is open for READ/WRITE access, then the
subunit shall update “operand[y]” to contain the node_ID of the
controller with read/write access.

all other
values

The value of “operand[y]” is not changed in the response frame; it
remains as FF FF16.

AV/C Digital Interface Command Set General Specification, Rev. 3.0 April 15, 1998, 1998003

Page 54 Copyright  1996-1998, 1394 Trade Association. All rights reserved.

The target shall also verify that the controller that issues a READ DESCRIPTOR or WRITE
DESCRIPTOR command has the access rights to that descriptor.

The OPEN DESCRIPTOR command has write-access, time out and bus reset requirements
as described here:

After a power reset, command reset or Serial Bus reset the descriptor of any subunit shall be in a closed
state.

If a descriptor is closed or has only been opened for read access, a subunit may accept any number of
OPEN DESCRIPTOR requests with a subfunction of READ OPEN as long as the subunit is able to
accommodate additional read-only access controllers.

If a descriptor is closed or has only been opened for read access, a subunit may accept a single OPEN
DESCRIPTOR control command with a subfunction of WRITE OPEN. If accepted, this OPEN
DESCRIPTOR operation for write access forces any existing read only opens to be closed.

If a descriptor is open for write access, a subunit shall reject any OPEN DESCRIPTOR control
commands except for a command with a subfunction of CLOSE sent by the controller that opened the
descriptor for write access.

A subunit shall implement a time-out period, recommended to be longer than one minute since the last
accepted OPEN DESCRIPTOR (for read-only and read/write access), READ DESCRIPTOR or WRITE
DESCRIPTOR control commands. If this time-out period expires, then the subunit shall close the
descriptor immediately. The descriptor is then available to be opened again, by any controller.

When the descriptor has been opened for read/write access, the time out period shall be measured
between the subunit’s response to the initial OPEN DESCRIPTOR (read/write subfunction) and the
first ensuing READ DESCRIPTOR or WRITE DESCRIPTOR command issued by the controller. If
the READ DESCRIPTOR or WRITE DESCRIPTOR command is not issued before the time out
period, then the descriptor shall be closed for read/write access. The subunit shall also measure the time
out between its response to a READ DESCRIPTOR or WRITE DESCRIPTOR command, and the
subsequent READ DESCRIPTOR or WRITE DESCRIPTOR command issued from the controller. If
the controller fails to either close the descriptor or issue another READ DESCRIPTOR or WRITE
DESCRIPTOR command within the time out period, then the subunit shall close the descriptor for
read/write access. The descriptor is then available to be opened again, by any controller.

Similar rules apply for read-only access, concerning the time between the initial OPEN DESCRIPTOR
(read only) response and the subsequent READ DESCRIPTOR command from the controller, and the
time between the subunit’s response to a READ DESCRIPTOR command and the next READ
DESCRIPTOR command issued by the controller. When the subunit closes the descriptor for read
access, it shall do so ONLY for that controller which failed to respond within the time out period. All
other controllers that have read access and are still within their time out limits shall retain read access.

Note that all of these time out measurements involve the same controller; when measuring the time
between a response and a subsequent command, it is important to remain consistent about which
controller interaction is being measured.

The rules described above are intended to help the target maintain a fair and stable
environment for descriptor access by controllers. Controllers are strongly recommended to
keep descriptors open (for read only or read/write access) only for the duration that access is
needed, and to relinquish access as soon as possible.

The OPEN DESCRIPTOR command may also be used as a notify command when
controllers wish to be advised of a possible change of status of the descriptor (when the state

April 15, 1998, 1998003 AV/C Digital Interface Command Set General Specification, Rev. 3.0

Copyright  1996-1998, 1394 Trade Association. All rights reserved. Page 55

of the descriptor changes based on the status values shown in the table above). The format
of the notify command is the same as status command, but with a ctype value of NOTIFY.
Controllers that want to know about changes to a descriptor should ask for notification on
the OPEN DESCRIPTOR command; when they are notified that it has been closed after
having been opened for write access, then they must determine if the data they care about
has changed.

1 0 . 2 R E A D D E S C R I P T O R c o m m a n d

The READ DESCRIPTOR control command is used to read the data specified by the
descriptor_identifier from the descriptor. The format of the READ DESCRIPTOR control
command is illustrated by the figure below:

The descriptor_identifier describes which descriptor structure is being accessed. The exact
format of this identifier will vary based on the kind of descriptor (e.g., subunit identifier
descriptor, object, object list), the method of specifying this descriptor, and on the type of
subunit for which the descriptor is defined.

The read_result_status operand is set by the target in the response frame. For the control
command frame, the controller shall set this field to FF16. For details on what this field
means, please refer to the description of the possible values returned for this field, below.

The data_length operand specifies the number of bytes to be read from the target. There is a
special case when data_length = 0, which means that the entire descriptor is to be read. In
the response frame, this field will be updated to contain the actual number of bytes that
were read.

IMPORTANT: Reading beyond the end of a data boundary is not permitted. If a target
receives a read request with a data_length that would result in reading past the end of the
data indicated by the descriptor_identifier operand, then it shall return only the legitimate
data, and update the data_length field to reflect the size of this data. It shall also update
the read_result_status field as described in the table below.

The address field specifies the address of the starting point to be read. It is an offset from
the beginning of the particular entity described by descriptor_identifier. When data_length =
0, then the address field shall be ignored and the target shall return the entire descriptor.

When data_length is not 0, if there is no data at the specified address or if the address is
not valid, then the target shall REJECT the command.

msb lsb

opcode READ DESCRIPTOR (0916)

operand[0] descriptor_identifier (MSB)

operand[1] :

: :

: descriptor_identifier (LSB)
: read_result_status

: reserved

: data_length (MSB)

: (LSB)

: address (MSB)

: (LSB)

AV/C Digital Interface Command Set General Specification, Rev. 3.0 April 15, 1998, 1998003

Page 56 Copyright  1996-1998, 1394 Trade Association. All rights reserved.

If an ACCEPTED response frame is returned by the target after a READ DESCRIPTOR
control command, the response data consists of additional operands, inserted after the
address field, that contain the data bytes requested. If the target is not able to return the
number of bytes indicated by the data_length input operand in a single operation due to
data transfer limitations, then it shall return the maximum quantity of data it is able to
and set the data_length field in the response frame to this value. It shall also update the
read_result_status field as described in the table below.

The following table summarizes the values that shall be set by the target for the
read_result_status field in the response frame, and what actions the controller should take
as a result:

An INTERIM response frame without data may be returned in advance of the ACCEPTED
or REJECTED response.

1 0 . 3 W R I T E D E S C R I P T O R c o m m a n d

The WRITE DESCRIPTOR control command is used to store variable-length data in the
descriptor of the target. The format of the WRITE DESCRIPTOR control command is
illustrated by the figure below:

When this occurs.. ...return this value in
the
read_result_status
operand...

...return this value in
the data_length
operand...

...and the controller
will understand this:

The READ request
can be handled with
no problem

1016

The original length
value passed as input
to the command

The returned data is
complete

The READ request
was only partially
satisfied due to data
transfer capacity
limitations

1116

The actual number of
bytes read (will be
different from the
input value)

The controller must
issue additional
READ command(s) to
get all of the desired
data

The READ request
started in valid data
space, but went
beyond the end of
valid data space

1216

The actual number of
bytes read (will be
different from the
input value)

Only the actual
number of bytes read
were available with
the specified
command operands

The READ request
began in invalid data
space, or no data was
at the specified
address

N/A (return a
REJECTED response
frame)

N/A
The operands
specified an invalid
condition, or some
other abnormal
situation occurred

April 15, 1998, 1998003 AV/C Digital Interface Command Set General Specification, Rev. 3.0

Copyright  1996-1998, 1394 Trade Association. All rights reserved. Page 57

The descriptor_identifier describes which descriptor structure is being accessed. The exact
format of this identifier will vary based on the kind of descriptor (subunit identifier
descriptor, object, object list), the method of specifying this descriptor, and on the type of
subunit for which the descriptor is defined. For more information, please refer to the
descriptor identifiers described in the OPEN DESCRIPTOR command.

The subfunction operand specifies the way information is being written by the controller. The
following table describes the legal values for this operand and what those values mean:

IMPORTANT: Uncontrolled writing beyond the end of a data boundary is not permitted. For
the “change” subfunction, if a target receives a write request with a data_length that would
result in writing past the end of the data indicated by the descriptor_identifier operand, then
it shall REJECT the command. This applies to the subunit identifier, object list and
individual entries within the object list. For fields within an object entry, the controller is
responsible for making sure not to overwrite the field being modified.

msb lsb

opcode WRITE DESCRIPTOR (0A16)

operand[0] descriptor_identifier (MSB)

operand[1] :

: :

: (LSB)
: subfunction

: group_tag

: data_length (MSB)

: (LSB)

: address (MSB)

: (LSB)

:

: data

:

subfunction value action
change 1016 Overwrite the descriptor part indicated by the address and length

operands. The controller is responsible for making sure that
exactly the same number of bytes are being used to replace
existing data.

replace 2016 Overwrite the complete descriptor. The target is responsible for
extending or shrinking descriptor storage to accommodate
differences in size between this descriptor and the one being
replaced. The address operand is ignored for this subfunction.

insert 3016 Perform an “insert descriptor” operation, inserting the new
descriptor before the one specified by the operand specified by
descriptor_identifier. The address operand is ignored for this
subfunction. This subfunction applies only to inserting object
entries into a list. See NOTE* below.

delete 4016 Perform a “delete descriptor” operation, deleting the descriptor
specified by descriptor_identifier. For this subfunction, address
and data_length are ignored. The target is responsible for
adjusting the size of descriptor storage to accommodate this
operation.

partial_replace 5016 Perform a “partial insert” or “partial delete” operation. The subunit
updates the descriptor structure to deal with the change in size
(bytes removed or added).

X all others reserved for future definition

AV/C Digital Interface Command Set General Specification, Rev. 3.0 April 15, 1998, 1998003

Page 58 Copyright  1996-1998, 1394 Trade Association. All rights reserved.

NOTE*: To use the subfunction insert for placing items at the end of a list, the controller
must specify a certain value to indicate where the insert shall take place. When using an
object entry position reference for the descriptor_identifier, specifying a value of all FF16 bytes
for the object position field means “add to the end of the list”. When using an object ID
reference, specifying a value of all FF16 bytes for the object ID field means “add to the end of
the list”.

The group_tag operand is used for indivisible update operations on a descriptor, in which
several WRITE DESCRIPTOR commands must be issued. The controller may use this field
to specify an arbitrary number of update operations which must be performed on an “all or

nothing” basis. This field may take one of the following values:
NOTE: The purpose of indivisible updates is to provide a safe mechanism for updating a descriptor
structure in the distributed environment, where interruptions and partially-updated descriptors may
have a fatal effect on the subunit. Supporting the group_tag is optional; if a subunit receives a non-
zero group_tag, it may return a response of NOT IMPLEMENTED. The controller will then have to
fall back to using immediate operations. Controllers should always verify the results of any WRITE
DESCRIPTOR actions, whether individual commands or a sequence of indivisible update operations.

The data_length operand specifies the number of bytes to be written to the descriptor. If
data_length specifies more bytes than can be accepted by the target in a single operation
then the target may either ACCEPT or REJECT the command. However, if it does drop
excess data and ACCEPT the command, then this must be indicated to the controller so
that it can respond accordingly.

If the combination of data_length and address reference invalid memory, then the target
shall REJECT the command.

The result shall be indicated by having the target modify the low nibble of the subfunction
field in the returned response (either the ACCEPTED or REJECTED response) according to
these rules:

group_tag value action
immediate 0016 Immediately write the data to the descriptor.

first 0116 Begin an “indivisible update” sequence, with this command being
the first of several which may follow. The target shall take the
necessary actions to prepare for this sequence, and to ensure
that the original descriptor structure can be preserved should the
sequence not finish normally.

continue 0216 Any number of subsequent commands may be issued using this
tag, after the “first” has been issued.

last 0316 This command signals the last in the sequence of indivisible
update operations. When the target subunit receives this
group_tag, it commits all of the commands in the sequence,
including this one, to the specified descriptor structure.

If the subunit does NOT receive this command before a bus
reset or the time out period used for descriptor access, then it
shall discard ALL of the commands in this sequence and leave
the specified descriptor unmodified.

X all others reserved for future definition

April 15, 1998, 1998003 AV/C Digital Interface Command Set General Specification, Rev. 3.0

Copyright  1996-1998, 1394 Trade Association. All rights reserved. Page 59

In the case that x116 is returned, then the target shall also update the data_length field in
the ACCEPTED response frame to indicate how many bytes were actually written. The
controller will then know that it must issue more WRITE DESCRIPTOR commands to
completely write the data.

The address field specifies the address of the starting point to be written. It is an offset from
the beginning of the particular entity described by data_identifier.

The data field contains the data bytes to be stored, the length of which is indicated by
data_length.

An INTERIM response frame may be returned in advance of the ACCEPTED or REJECTED
response.

If the target returns ACCEPTED, INTERIM or REJECTED responses, then the frame shall
NOT contain the data that was specified in the original command frame. This avoids
possibly large data transfers in the case that such responses are made.

1 0 . 3 . 1 P a r t i a l R e p l a c e O p e r a t i o n s

The WRITE DESCRIPTOR control command has the following frame when the
partial_replace subfunction is specified:

response type returned
subfunction

value

action

ACCEPTED x016 The specified subfunction was performed with no problem.
ACCEPTED x116 The data write operation was only partially satisfied, so some

data was dropped. The controller will need to issue more
commands

REJECTED x216 The target supports the specified descriptor_type but not the
specified descriptor_type_specific_reference in the
descriptor_identifier, or the target supports the specified
descriptor_identifier but the address and data_length fields
specified an invalid address, so the write operation was not
performed.

NOT
IMPLEMENTED

same as
control

command

The target does not support the specified descriptor_type.

- all others reserved for future definition

AV/C Digital Interface Command Set General Specification, Rev. 3.0 April 15, 1998, 1998003

Page 60 Copyright  1996-1998, 1394 Trade Association. All rights reserved.

The descriptor_identifier, subfunction and group_tag operands are as described above.

The replacement_data_length field specifies the number of bytes in the replacement_data
operand. When replacement_data_length = 0, the operation is a partial delete and the
replacement_data operand does not exist. In this case, the original_data_lengh operand shall
be greater than 0, indicating the number of bytes to be deleted.

When the original_data_length operand = 0, the operation is a partial insert. In this case,
the replacement_data_length operand shall be greater than 0, indicating the number of bytes
to be inserted.

The combination of replacement_data_length = 0 and original_data_length = 0 is illegal.

The address operand specifies where the operation (insert or delete) is to be performed. In
the case of insert, it indicates where to begin inserting bytes. In the case of delete, it
indicates where to begin deleting bytes.

1 0 . 3 . 2 W R I T E D E S C R I P T O R S t a t u s

In addition to the use of the WRITE DESCRIPTOR control command, WRITE
DESCRIPTOR with a ctype of STATUS may also be used to determine the subunit’s
capability to accept data in its descriptor in a single operation. In this case, the format
shown by the figure below is used:

msb lsb

opcode WRITE DESCRIPTOR (0A16)

operand[0] descriptor_identifier (MSB)

operand[1] :

: :

: (LSB)
: subfunction “partial_replace” = 5016

: group_tag

: replacement_data_length (MSB)

: (LSB)

: address (MSB)

: (LSB)

: original_data_length

:

:

: replacement_data

:

msb lsb

opcode WRITE DESCRIPTOR (0A16)

operand[0] descriptor_identifier (MSB)

operand[1] :

: :

: (LSB)
: FF16

: FF16

: FF16

: FF16

April 15, 1998, 1998003 AV/C Digital Interface Command Set General Specification, Rev. 3.0

Copyright  1996-1998, 1394 Trade Association. All rights reserved. Page 61

The descriptor_identifier field is as described above. The remaining 4 bytes shall be set to
FF16 on input.

The response frame for the WRITE DESCRIPTOR status command is the same as the
control command frame, except that the variable sized data operand and the address
operand are not included. In the STABLE response frame returned by the subunit, the
operands after the descriptor_identifier will be replaced with the subfunction, group_tag and
data_length as shown in the control command frame.

The data_length operand shall indicate the maximum number of bytes that may be written
into the specified descriptor in a single WRITE DESCRIPTOR operation. If this operand is
returned with a value of zero, then this means that there is no write access possible for the
descriptor because it can’t be modified.

The subfunction operand shall be set to FF16 in the status command response frame, but
will have no meaning.

The group_tag operand shall be set to 0016 in the response frame.

1 0 . 4 S E A R C H D E S C R I P T O R c o m m a n d

The SEARCH DESCRIPTOR command allows a controller to request the subunit to execute
a search within the descriptor data space (NOT within the content data space), looking for
a specified entity. If a search is successful, the returned results will be a specifier which
identifies the first candidate which was found; multiple specifiers are not returned by the
search operation. The controller must specify additional searches to find additional
instances which match the search criteria.

The control command has the following format:

The search_for operand specifies what the controller would like the subunit to search for.
This operand has the following format:

msb lsb

opcode SEARCH DESCRIPTOR (0B16)

operand[0]

: search_for

:
:

: search_in

:

:

: start_point

:

: direction

: response_format

: status

AV/C Digital Interface Command Set General Specification, Rev. 3.0 April 15, 1998, 1998003

Page 62 Copyright  1996-1998, 1394 Trade Association. All rights reserved.

The length operand specifies the number of bytes for the following search_data operand. To
perform a wild card search on the search_data operand, the controller can set the length
operand to 0 and not include any search_data.

The search_data operand contains the subject of the search. These bytes can represent text
such as “CNN” or any numeric value.

The search_in operand specifies the location and scope of the search. The controller is not
required to have read or read/write access to the descriptor space indicated by search_in, in
order to request the search. The subunit shall search through all descriptors which match
the search_in operand, even if they are open for modification by a controller.

This operand has the following format:

The length operand specifies the number of bytes in the type_specific_info operand.

The type operand specifies the type of specification for the search location. It can have one of
the following values:

The type_specific_info operand specifies the scope and location of the search. Its format is
defined by the type values in the table above. The type_specific_info operand is specified
below for each of the type values, in the section titled type_specific_info for the search_in
operand on page 66.

address
offset

msb lsb

search_for operand of SEARCH DESCRIPTOR
0016 length
0116

: search_data
:

address
offset

msb lsb

search_in operand of SEARCH DESCRIPTOR
0016 length
0116 type
0216

: type_specific_info
:

type value for
search_in

meaning

1016 Object Lists
2016 Objects in Object List Descriptors
3016 Other Descriptors
5016 Fields specified by an offset address and length in Object

List Descriptors
5216 list_type fields in Object List Descriptors
6016 Fields specified by an offset address and length in Object

Descriptors
6216 entry_type fields in Object Descriptors
6416 child_list_ID fields in Object Descriptors
6616 object_ID fields in Object Descriptors
7016 Fields specified by an offset address and length in Other

Descriptors
all others reserved for future specification

April 15, 1998, 1998003 AV/C Digital Interface Command Set General Specification, Rev. 3.0

Copyright  1996-1998, 1394 Trade Association. All rights reserved. Page 63

The start_point operand specifies where to begin the search. It has the following basic
structure:

The length operand specifies the number of bytes in the type_specific_info operand.

The type operand specifies how the starting point is indicated, in the type_specific_info
operand.

The type_specific_info operand indicates the starting point. Its format depends on the value
of the type operand. The type_specific_info operand is specified below for each of the type
values, in the section titled type_specific_info for the start_point operand on page 69.

The direction operand specifies how the search should proceed, as indicated in the following
table:

address
offset

msb lsb

start_point operand of SEARCH DESCRIPTOR
0016 length
0116 type
0216

: type_specific_info
:

type value for
start_point

starting point for the search

0016 The controller does not care where the start point is - the
subunit chooses where to start the search operation.

0216 At the “current location”, where the current location is defined
by the currently selected object descriptor.

0316 At the “current location”, where the current location is defined
by the position of the last search result.

1016 At the point specified by an offset address in the Object List
Descriptor, where the list is specified by its list_ID .

1116 At the list_type field in the specified Object List Descriptor,
where the list is specified by its list_ID .

2016 At the point specified by an offset address in the specified
Object Entry Descriptor, where the object is specified by
object_position.

2116 At the point specified by an offset address in the specified
Object Entry Descriptor, where the object is specified by
object_ID .

2216 At the entry_type field in the specified Object Entry
Descriptor, where the object is specified by object_position.

2316 At the entry_type field in the specified Object Entry
Descriptor, where the object is specified by object_ID .

2416 At the child_list_ID field in the specified Object Entry
Descriptor, where the object is specified by object_position.

2516 At the child_list_ID field in the specified Object Entry
Descriptor, where the object is specified by object_ID .

2616 At the object_ID field in the specified Object Entry
Descriptor, where the object is specified by object_position.

2716 At the object_ID field in the specified Object Entry
Descriptor, where the object is specified by object_ID .

3016 At the point specified by an offset address in the Other
Descriptor, where that descriptor is specified by a
descriptor_identifier structure.

all others reserved for future specification

AV/C Digital Interface Command Set General Specification, Rev. 3.0 April 15, 1998, 1998003

Page 64 Copyright  1996-1998, 1394 Trade Association. All rights reserved.

The order of searching, as specified by the direction operand, has the following rules:

The response_format operand specifies how the controller would like the return data to be
presented, as defined in the following table:

The status operand is set to FF16 by the controller in the control frame. It is updated in the
ACCEPTED response frame to indicate the result of the search operation.

The ACCEPTED response frame has the following format:

direction meaning
0016 The controller does not care where about the direction of the

search - the subunit chooses the direction.
1016 Up - in the increasing order of the search_for specifier.
1216 Up - in the increasing order of the search_for specifier,

based on the object_entry_position.
1316 Up - in the increasing order of the search_for specifier,

based on the object_ID .
2016 Down - in the decreasing order of the search_for specifier.
2216 Down - in the decreasing order of the search_for specifier,

based on the object_entry_position.
2316 Down - in the decreasing order of the search_for specifier,

based on the object_ID .
all others reserved for future specification

search_in rules for search direction
a field The address value within the field (increasing -10 - or decreasing - 20 -

addresses)
an Object Entry

Descriptor
an Object List

Descriptor
fields in objects The object_entry_position value (increasing -12 - or decreasing - 22 -)

objects The object_id value (increasing - 13 - or decreasing - 23 -)
fields in lists The list_id value (increasing - 10 - or decreasing - 20 -)

lists

response_form
at

meaning

0016 Not specified - the subunit may choose how to present the
data.

1016 By descriptor_type 1016 (specified by list_ID)
1116 By descriptor_type 1116 (specified by list_type)
2016 By descriptor_type 2016 (object_position)
2116 By descriptor_type 2116 (object_ID)

all others reserved for future specification

April 15, 1998, 1998003 AV/C Digital Interface Command Set General Specification, Rev. 3.0

Copyright  1996-1998, 1394 Trade Association. All rights reserved. Page 65

The operands from search_for through direction are as described above, and will be returned
with the same values as were passed in the control frame.

The response_format operand will either contain the originally specified value (in the case
where a specific format was requested by the controller), or it will contain the format chosen
by the subunit (in the case where the controller specified a “don’t care” format).

The status operand specifies the status of the search after completion. The status can be
successful, meaning that either the specified data or any data matching the search criteria
was found, or unsuccessful, meaning that no data matching the search criteria was found.
Note that while the SEARCH DESCRIPTOR command may be accepted by the subunit, the
search might not be successful. The following table specifies the values which may be
returned for the status operand:

NOTE: In the case of returned status 2116, the length field of the search_for operand shall be updated
to indicate the maximum length of the search_for specification supported by the subunit.

The descriptor_identifier operand identifies the data which is being returned. It will be in the
format indicated by the response_format operand.

The address operand specifies where the returned data can be found, in the case of a search
for a data field. In the case of descriptor structures such as lists, objects or any other
descriptor, the descriptor_identifier will contain enough information for the controller to access
the data. In these cases, the address field shall be ignored by the controller. This operand is
2 bytes in length.

msb lsb

opcode SEARCH DESCRIPTOR (0B16)

operand[0]

: search_for

:
:

: search_in

:

:

start_point

:

: direction

: response_format

: status

:

: descriptor_identifier

:

: address

:

response frame status meaning
ACCEPTED 1016 Successful - the specified data was found.
REJECTED 2016 The specified data was not found.

2116 The length of the search_for operand exceeds the capability
of the subunit. See NOTE*.

--------------- all others reserved for future specification

AV/C Digital Interface Command Set General Specification, Rev. 3.0 April 15, 1998, 1998003

Page 66 Copyright  1996-1998, 1394 Trade Association. All rights reserved.

1 0 . 4 . 1 t y p e _ s p e c i f i c _ i n f o f o r t h e s e a r c h _ i n o p e r a n d

The following diagrams illustrate the format of the type_specific_info fields of the search_in
operand. These fields are defined by the type field of the search_in operand.

1 0 . 4 . 1 . 1 S u p p o r t i n g D a t a S t r u c t u r e s
Many of the type_specific_info structures for the search_in operand make use of the following
two structures:

1 0 . 4 . 1 . 1 . 1 o b j e c t _ e n t r y _ d e s c r i p t o r _ s p e c i f i e r

The object_entry_descriptor_specifier is a data structure which specifies an object entry. In the
context of the search_in operand, it specifies an object or a collection of objects in which the
search operation should be performed. It has the following format:

The type field defines how the object(s) are indicated in the type_specific field.

The following table illustrates the relationship between the type and type_specific fields:

NOTE: When an object is specified by its object_ID, the size of the type_specific field is indicated by
the size_of_object_ID field of the subunit identifier descriptor. When an object is specified by its
object_position, the size of the type_specific field is indicated by the size_of_object_position field of
the subunit identifier descriptor.

1 0 . 4 . 1 . 1 . 2 o b j e c t _ l i s t _ d e s c r i p t o r _ s p e c i f i e r

The object_list_descriptor_specifier is a data structure which identifies an object list (or more
than one list). In the context of the search_in operand, it specifies the list or a collection of
lists in which the search operation should be performed. It has the following format:

The type field defines how the list(s) are indicated in the type_specific field.

The following table illustrates the relationship between the type and type_specific fields:

address
offset

msb lsb

object_entry_descriptor_specifier
0016 type

:
: type_specific

type meaning type_specific field size of type_specific
field

2016 a specified object (by
position)

object_position k bytes (see NOTE
below)

2116 a specified object (by
object_ID)

object_ID k bytes (see NOTE
below)

2216 any objects with the
specified entry_type
field

entry_type 1 byte

2F16 any objects none zero bytes
all others reserved for future

specification
--------------- ---------------

address
offset

msb lsb

object_list_descriptor_specifier
0016 type

:
: type_specific

April 15, 1998, 1998003 AV/C Digital Interface Command Set General Specification, Rev. 3.0

Copyright  1996-1998, 1394 Trade Association. All rights reserved. Page 67

NOTE: * The number of bytes for the type_specific field when using a list_ID will depend on the
size_of_list_ID field of the target subunit identifier descriptor.

1 0 . 4 . 1 . 1 . 3 d e s c r i p t o r _ i d e n t i f i e r

The general descriptor_identifier structure is already defined in the OPEN DESCRIPTOR
command. For the SEARCH DESCRIPTOR command, it is used to specify one of the (non-
object and non-list) descriptor structures (such as the Subunit Identifier Descriptor) in which
the search operation is to be performed.

1 0 . 4 . 1 . 1 . 4 o f f s e t _ a d d r e s s a n d l e n g t h

The offset_address field specifies the starting address within the specified descriptor
structure to begin the search. This field is always 2 bytes in length.

The length field specifies the number of bytes over which to perform the search. This field is
always 1 byte in length.

1 0 . 4 . 1 . 2 T h e t y p e _ s p e c i f i c _ i n f o D a t a S t r u c t u r e s

type meaning type_specific field size of type_specific
field

1016 a specified list (by
list_ID)

list_ID n bytes *

1216 any lists with the
specified list_type

list_type 1 byte

all others reserved for future
specification

--------------- ---------------

address
offset

msb lsb

type_specific_info for the search_in operand, type 1016

0016

: object_list_descriptor_specifier
:

address
offset

msb lsb

type_specific_info for the search_in operand, type 2016

0016

: object_list_descriptor_specifier
:
:
: object_entry_descriptor_specifier
:

address
offset

msb lsb

type_specific_info for the search_in operand, type 3016

0016

: descriptor_identifier
:

AV/C Digital Interface Command Set General Specification, Rev. 3.0 April 15, 1998, 1998003

Page 68 Copyright  1996-1998, 1394 Trade Association. All rights reserved.

address
offset

msb lsb

type_specific_info for the search_in operand, type 5016

0016

: object_list_descriptor_specifier
:
: offset_address
:
: length

address
offset

msb lsb

type_specific_info for the search_in operand, type 5216

0016

: object_list_descriptor_specifier
:

address
offset

msb lsb

type_specific_info for the search_in operand, type 6016

0016

: object_list_descriptor_specifier
:
:
: object_entry_descriptor_specifier
:
: offset_address
:
: length

address
offset

msb lsb

type_specific_info for the search_in operand, type 6216

0016

: object_list_descriptor_specifier
:
:
: object_entry_descriptor_specifier
:

April 15, 1998, 1998003 AV/C Digital Interface Command Set General Specification, Rev. 3.0

Copyright  1996-1998, 1394 Trade Association. All rights reserved. Page 69

1 0 . 4 . 2 t y p e _ s p e c i f i c _ i n f o f o r t h e s t a r t _ p o i n t o p e r a n d

The following diagrams illustrate the format of the type_specific_info fields of the start_point
operand. These fields are defined by the type field of the start_point operand.

1 0 . 4 . 2 . 1 S u p p o r t i n g D a t a S t r u c t u r e s
The type_specific_info structures of the start_point operand make use of the
descriptor_identifier specifier structures defined by the OPEN DESCRIPTOR command,
INCLUDING those for the object entry and object list descriptors. Note that this is different
from the SEARCH DESCRIPTOR command, which by necessity had to define its own object
and object list descriptor specifiers.

Some of the type_specific_info structures of the start_point operand also make use of an
address_offset field. This offset is from the beginning of the descriptor structure specified in
the start_point operand.

The entry_type field used in some of the structures refers to the type of object entry, as
defined by the entry_type field of the object descriptor structures.

address
offset

msb lsb

type_specific_info for the search_in operand, type 6416

0016

: object_list_descriptor_specifier
:
:
: object_entry_descriptor_specifier
:

address
offset

msb lsb

type_specific_info for the search_in operand, type 6616

0016

: object_list_descriptor_specifier
:
:
: object_entry_descriptor_specifier
:

address
offset

msb lsb

type_specific_info for the search_in operand, type 7016

0016

: descriptor_identifier
:
: offset_address
:
: length

AV/C Digital Interface Command Set General Specification, Rev. 3.0 April 15, 1998, 1998003

Page 70 Copyright  1996-1998, 1394 Trade Association. All rights reserved.

1 0 . 4 . 2 . 2 T h e t y p e _ s p e c i f i c _ i n f o D a t a S t r u c t u r e s

address
offset

msb lsb

type_specific_info for the start_point operand, type 0016

------ There is no type_specific_info for type 0016

address
offset

msb lsb

type_specific_info for the start_point operand, type 0216

------ There is no type_specific_info for type 0216

address
offset

msb lsb

type_specific_info for the start_point operand, type 0316

------ There is no type_specific_info for type 0316

address
offset

msb lsb

type_specific_info for the start_point operand, type 1016

0016

: descriptor_identifier for an object list specified by list_ID
:
: offset_address (2 bytes)
:

address
offset

msb lsb

type_specific_info for the start_point operand, type 1116

0016

: descriptor_identifier for an object list specified by list_ID
:

address
offset

msb lsb

type_specific_info for the start_point operand, type 2016

0016

: descriptor_identifier for an object entry position reference
:
: offset_address
:

address
offset

msb lsb

type_specific_info for the start_point operand, type 2116

0016

: descriptor_identifier for an object ID reference
:
: offset_address
:

address
offset

msb lsb

type_specific_info for the start_point operand, type 2216

0016

: descriptor_identifier for an object entry position reference
:
: entry_type

address
offset

msb lsb

type_specific_info for the start_point operand, type 2316

0016

: descriptor_identifier for an object ID reference
:
: entry_type

address
offset

msb lsb

type_specific_info for the start_point operand, type 2416

0016

: descriptor_identifier for an object entry position reference
:

April 15, 1998, 1998003 AV/C Digital Interface Command Set General Specification, Rev. 3.0

Copyright  1996-1998, 1394 Trade Association. All rights reserved. Page 71

1 0 . 4 . 3 E x a m p l e s o f t h e S E A R C H D E S C R I P T O R C o m m a n d
(I n f o r m a t i v e)

This section presents some examples of how to use the SEARCH DESCRIPTOR command
for various types of searches. For those examples which refer to a specific type of subunit,
supporting information may be found in the specification document for that subunit.

1 0 . 4 . 3 . 1 E x a m p l e 1 : S e a r c h f o r t h e s e r v i c e _ n a m e “ N H K ” i n a l l D V B
s e r v i c e l i s t s (t u n e r s u b u n i t)
This example demonstrates how an arbitrary field of an object descriptor structure can be
searched, looking for a specified value. This type of search could be used to find fields which
may be unknown to the target subunit.

The control command frame for this search would be defined as follows:

address
offset

msb lsb

type_specific_info for the start_point operand, type 2516

0016

: descriptor_identifier for an object ID reference
:

address
offset

msb lsb

type_specific_info for the start_point operand, type 2616

0016

: descriptor_identifier for an object entry position reference
:

address
offset

msb lsb

type_specific_info for the start_point operand, type 2716

0016

: descriptor_identifier for an object ID reference
:

address
offset

msb lsb

type_specific_info for the start_point operand, type 3016

0016

: descriptor_identifier “other” descriptor
:
: offset_address
:

AV/C Digital Interface Command Set General Specification, Rev. 3.0 April 15, 1998, 1998003

Page 72 Copyright  1996-1998, 1394 Trade Association. All rights reserved.

1 0 . 4 . 3 . 2 E x a m p l e 2 : S e a r c h f o r t h e n e x t s e r v i c e o b j e c t i n t h e s e r v i c e
l i s t s (t u n e r s u b u n i t)
This example shows how to search on one of the basic fields defined for all object descriptor
structures. This type of search is useful for well-defined fields that all target subunits must
know about.

The control command frame for this type of search would appear as follows:

1 0 . 4 . 3 . 3 E x a m p l e 3 : S e a r c h f o r t h e p a r e n t o b j e c t o f t h e s e r v i c e l i s t w i t h
l i s t _ I D 2 0 0 0 1 6 (t u n e r s u b u n i t)
The control command frame for this type of search would appear as follows:

msb lsb

opcode SEARCH DESCRIPTOR (0B16)

operand[0] search_for (0316) length

operand[1] (4E16) “N”

operand[2] (4816) “H”

operand[3] (4B16) “K”

operand[4] search_in (0716) length

operand[5] (6016) type: search in specified fields

operand[6] (1216) in any lists with the specified list_type field

operand[7] (8216) list_type: service

operand[8] (2F16) search in any objects in the lists

operand[9] (0016) offset address...

operand[10] (1916) ...for the service_name field

operand[11] (0316) length

operand[12] start_point (0016) not specified - subunit chooses

operand[13] direction (0016) not specified - subunit chooses

operand[14] response_format (2116) return the data as an object_ID reference

operand[15] status (FF16)

msb lsb

opcode SEARCH DESCRIPTOR (0B16)

operand[0] search_for (0016) not specified

operand[1] search_in (0416) length

operand[2] (6616) type: search in object_ID fields

operand[3] (1216) in any lists with the specified list_type field

operand[4] (8216) list_type: service

operand[5] (2F16) search in any objects in the lists

operand[6] start_point (0216) start at the currently selected object

operand[7] direction (1316) search up (increasing order of object_ID value)

operand[8] response_format (2116) return the data as an object_ID reference

operand[9] status (FF16)

April 15, 1998, 1998003 AV/C Digital Interface Command Set General Specification, Rev. 3.0

Copyright  1996-1998, 1394 Trade Association. All rights reserved. Page 73

1 0 . 5 O B J E C T N U M B E R S E L E C T c o m m a n d

The OBJECT NUMBER SELECT command performs a selection of an object (or many
objects). This is achieved by specifying, for each desired object, a particular list and an object
in that list. The nature of what it means to “select” an object will be defined by the type of
subunit receiving the command. For details on subunit-specific functionality, please refer to
the OBJECT NUMBER SELECT reference in the appropriate subunit-specific documents.

The general operation of ONS is to allow the controller to specify which object(s) to select, a
source plug that should receive the data from the object(s), and a subfunction which modifies
the command in a subunit-specific way. The format of the OBJECT NUMBER SELECT
control command frame is as follows:

The source_plug operand indicates the subunit source plug number which shall output the
specified object(s). The plug value FE16 is a special case; it means that the specified item(s)
should be “selected”, but not output to any source plug of the subunit. This is used when the
controller does not want the selection specification to affect the output signal. An example is
the case of a CD changer subunit; selecting a CD would mean that the CD is taken from the
changer and placed into the player mechanism and has no meaning for the output signal.

msb lsb

opcode SEARCH DESCRIPTOR (0B16)

operand[0] search_for (0216) length

operand[1] (2016) “20”

operand[2] (0016) “00”

operand[3] search_in (0416) length

operand[4] (6416) type: search in child_list_ID fields

operand[5] (1216) in any lists with the specified list_type field

operand[6] (8016) list_type: multiplex

operand[7] (2F16) search in any objects in the lists

operand[8] start_point (0016) not specified - subunit chooses the start point

operand[9] direction (0016) not specified - subunit chooses the direction

operand[10] response_format (2016) return the data as an object position reference

operand[11] status (FF16)

msb lsb

opcode OBJECT NUMBER SELECT (0D16)

operand[0] source_plug

operand[1] subfunction

operand[2] status

operand[3] number_of_ons_selection_specifications (n)

operand[4]

: ons_selection_specification[0]

:

:

: :

:

: ons_selection_specification[n - 1]

:

:

AV/C Digital Interface Command Set General Specification, Rev. 3.0 April 15, 1998, 1998003

Page 74 Copyright  1996-1998, 1394 Trade Association. All rights reserved.

The subfunction field specifies the operation of the control command. The general AV/C
model defines a set of subfunctions for this command, but the meaning of “selection” may
vary according to the type of subunit receiving this command. Different types of subunits
may not be able to support all of the general subfunctions, and they may define subunit
type-specific subfunctions. Please refer to the appropriate subunit specification document for
specific details of the subfunctions supported by that subunit type, and what those
subfunctions mean for that subunit type.

For the general AV/C model, the following subfunctions are defined. Note that the
description of what action to take refers to the output signal, but the same concepts are
applicable to the non-output signal, plug FE16 cases:

IMPORTANT NOTE: The values defined for the subfunction indicate that the two most
significant bits are set to 1. These two bits are reserved for future specification, and are set
to 1 so that they are compatible in polarity with the existing CONNECT commands.
Controllers should be aware of this when examining the values of subfunctions for all
selection commands. Please refer to the section titled Rules for Reserved Fields on page 34
for details on handling reserved fields.

The status field shall be set to FF16 on input to the control command. In the ACCEPTED
response frame, this field shall be updated with the appropriate value as defined here:

For all responses, the response frame shall consist only of the first three fields (up to the
status field). All other fields of the control command frame shall not be returned. In case of
the INTERIM or REJECTED responses, the contents of the status field shall be set to FF16.

The number_of_ons_selection_specifications operand shows the number of ONS selection
specifiers that are provided in the parameter block.

The ons_selection_specification[x] operands each define a single object to be selected. The
ons_selection_specification structure has two basic forms: a full path specification from the
root of a hierarchy down to the object being selected; and a “don’t care” version of this
specifier which does not indicate a path to an object. These are illustrated in the following
sections.

subfunction value action
clear C016 Stop the output of all selections on the specified plug.

No selection specifiers shall be included in the
command frame for this subfunction.

remove D016 Remove the specified selection from the output
stream on the specified plug.

append D116 Add (multiplex) the specified selection to the current
output.

replace D216 Remove the current selection from the specified plug,
and output or multiplex the specified selection.

new D316 Output the specified selection on the specified plug if
the plug is currently unused; otherwise, REJECT the
selection command.

X all others reserved for future specification

status value meaning
0016 the selection specification indicated a unique item, which was selected
0116 the selection specification was ambiguous, so the subunit selected one

(please refer to the “don’t care” path specification description below)
all others reserved for future specification

April 15, 1998, 1998003 AV/C Digital Interface Command Set General Specification, Rev. 3.0

Copyright  1996-1998, 1394 Trade Association. All rights reserved. Page 75

Some of the contents of this specification will vary based on the type of subunit (target)
which is receiving this command. For details on subunit-specific descriptors, please refer to
the OBJECT NUMBER SELECT reference in the appropriate subunit-specific sections.

1 0 . 5 . 1 S u b f u n c t i o n I m p l e m e n t a t i o n R u l e s

The following rules shall be adhered to when a subunit implements the OBJECT NUMBER
SELECT command subfunctions. Note that some types of subunits may add further rules,
but they shall not conflict with these general rules:

The remove subfunction shall be REJECTED if the specified information instances are not present on
the specified output plug.

If a controller wants to be sure that it is making a selection on an unused plug, then it should use the
new subfunction to establish an initial selection on that plug. Subsequent selections may be appended
to that plug.

1 0 . 5 . 2 T h e G e n e r a l o n s _ s e l e c t i o n _ s p e c i f i c a t i o n S t r u c t u r e

The general ons_selection_specification is as follows:

The fields of this ons_selection_specification define exactly one path, among possibly many, to
the desired object being selected. This is necessary because in general, an object may have
more than one parent and hence more than one path specification.

The root_list_ID field contains the ID of the root list that defines the beginning of the path.
This list must be the top of a hierarchy (e.g., it must be referenced from the subunit
identifier descriptor). The root lists will have fixed or well-known ID values.

The selection_indicator field indicates how the object references are specified, either by
position or unique object ID. Each path_specifier and the target must be specified in the
same manner. The selection_indicator field is encoded as follows:

General ons_selection_specification (full path specification)
address offset contents

0016 root_list_ID
:
: selection_indicator
: target_depth (m)
:
: path_specifier[0]
:
:
: :
:
: path_specifier[m - 1]
:
:
:
: target
:
:

AV/C Digital Interface Command Set General Specification, Rev. 3.0 April 15, 1998, 1998003

Page 76 Copyright  1996-1998, 1394 Trade Association. All rights reserved.

The target_depth field indicates how deep in the hierarchy to go in order to find the list
which holds the target object(s) to be selected. The root of the hierarchy has a depth of zero.

The path_specifier[x] fields appear in order from the top of the hierarchy down. A level
corresponds to a list, and each path_specifier indicates an object in the list at that level of
the hierarchy. The root has level zero. Since the path specification always starts with the
root list and an entry in that list, and since an entry always contains exactly zero or one
child reference, we always know exactly which list we are looking in and what the next list is
that we will be looking at.

The target field will indicate which object is to be selected from the target level list indicated
by the path specification. The general format of the target is as follows:

The format of the target_object_reference and child_object_reference[x] fields is specified by the
target_format_flag of the selection_indicator field described above. If the selection_indicator
indicates that no specific child objects are to be selected, then the number_of_children and
child_object_reference[x] fields are not present.

The format of the target field may also be defined in subunit-specific ways if required.

1 0 . 5 . 3 T h e “ D o n ’ t C a r e ” S p e c i f i c a t i o n

In some cases a controller may know the unique object ID of an item that it wants to select,
and it does not need to traverse a list hierarchy to find it. In some cases, the controller may
not be able to determine an exact path for the item that it wants, and is willing to accept
whatever path, among possibly many, the subunit may choose. In other situations, the
particular technology may be defined with non-ambiguous paths among all levels of the
hierarchy so a full path specification is not required.

value selection_indicator for the full path specification
1xxx xxxx specifier_type_flag - when set to 1, this indicates that the path

specifiers and the specifiers in the target are by object ID. When it is
0, it indicates that the path specifiers and specifiers in the target are
by object position.

xxxx xxx1 target_format_flag - this flag indicates the format of the target field.
When set to 1, this flag indicates that the target is to be selected
using specified CHILDREN of that object. When this flag is zero, then
the entire object is to be selected (no specific CHILDREN are
specified). Please see the example selections for details.

all others reserved for future specification

format of the target field (full path specification)
address offset contents

0016

: target_object_reference
:
:
: number_of_children (m)
:
: child_object_reference [0]
:
: :
:
: child_object_reference [m - 1]
:

April 15, 1998, 1998003 AV/C Digital Interface Command Set General Specification, Rev. 3.0

Copyright  1996-1998, 1394 Trade Association. All rights reserved. Page 77

In these cases, the controller may not want to or may not be able to fill out a full path
specification for the ons_selection_specification. For this, we define the “don’t care”
specification, which only points at the object to be selected. The format of the “don’t care”
ons_selection_specification is as follows:

The root_list_ID specifies the root list of the hierarchy from which the objects will be
selected. This narrows down the scope of where an object with a given object ID is located.

The selection_indicator field is described in the table below. For the don’t care specification,
the target_depth field shall be FF16.

When the specifier_type_flag is zero, then the target field shall have the following format:

In the above diagram, the fields from number_of_children through child_object_reference[m - 1]
exist only if the target_format_flag is set to one.

When the specifer_type_flag is one, then the target field shall have the following format:

ons_selection_specification (“don’t care” specification)
address offset contents

0016 root_list_ID
:
: selection_indicator
: target_depth (m) = FF16

:
: target
:
:

value selection_indicator for the “don’t care” specification
1xxx xxxx specifier_type_flag - when set to 1, this indicates that the specifiers in

the target are by list type and object ID. When it is 0, it indicates that
the specifiers in the target are by list ID and object position.

xxxx xxx1 target_format_flag - this flag indicates the format of the target field.
When set to 1, this flag indicates that the target is to be selected
using specified CHILDREN of that object. When this flag is zero, then
the entire object is to be selected (no specific CHILDREN are
specified). Please see the example selections for details.

all others reserved for future specification

target field (“don’t care” specification) when specifier_type_flag = 0
address offset contents

0016 list_ID
:
: target_object_reference
: (object_position)
: number_of_children (m)
:
: child_object_reference[0]
: (object_position)
: :
:
: child_object_reference[m - 1]
: (object_position)

AV/C Digital Interface Command Set General Specification, Rev. 3.0 April 15, 1998, 1998003

Page 78 Copyright  1996-1998, 1394 Trade Association. All rights reserved.

In the above diagram, the fields from number_of_children through child_object_reference[m - 1]
exist only if the target_format_flag is set to one.

1 0 . 5 . 4 O b j e c t S e l e c t i o n E x a m p l e s

The following diagrams illustrate various types of object selection, as indicated by the
selection_indicator described above.

Example 1 shows the selection of an entire object (S7) with the object reference being the
object ID. The results of the selection will be object S7 composed of all three of its children
(C5, C6 and C7).

Example 2 shows the selection of the same object (S7), but this time it will be composed of
only children C5 and C6.

These are the two ONS selection methods defined for the general AV/C list model. Specific
types of subunits (such as tuners) may define additional selection methods.

target field (“don’t care” specification) when specifier_type_flag = 1
address offset contents

0016 list_type
0116 target_object_reference

:
: (object_ID)
: number_of_children (m)
:
: child_object_reference[0]
: (object_ID)
: :
:
: child_object_reference[m - 1]
: (object_ID)

April 15, 1998, 1998003 AV/C Digital Interface Command Set General Specification, Rev. 3.0

Copyright  1996-1998, 1394 Trade Association. All rights reserved. Page 79

C1 C2 C3 C4

2003

0 1 2 3

C5 C6 C7

2004

0 1 2

C8 C9 C10 C11

2005

0 1 2 3

path [0]

path [1]

path [2]

S1 S2

2000

0 1

S3 S4 S5 S6

2001

0 1 2 3

S7 S8 S9

2002

0 1 2

M1 M2 M3

1000

1 20

root_list

0

object_position = 0

list_ID = 2002

list_type = S object_ID = 7

2002

S7
Legend for this example:

Example 1: ons_selection_specification for the object “S7”

root_list_ID

selection_indicator

target_depth

path [0]

target

10

00

1xxx xxx0

01

00

00

00

03

00

00

00

07

Notes

list ID = 1000

specifier_type flag = by object ID

target_format_flag = without children

path [0] (object ID = 3)

target (object ID = 7)

AV/C Digital Interface Command Set General Specification, Rev. 3.0 April 15, 1998, 1998003

Page 80 Copyright  1996-1998, 1394 Trade Association. All rights reserved.

Example 2: ons_selection_specification for the object “S7” using specified children

Field

root_list_ID

selection_indicator

target_depth

path [0]

target

number_of_children

child[0]

child [1]

Value

10

00

1xxx xxx1

01

00

00

00

03

00

00

00

07

02

00

00

00

05

00

00

00

06

Notes

list ID = 1000

reference_type flag = by object ID

target_format_flag = using specified children

(object ID = 3)

(object ID = 7)

the target consists of two children

the object ID in the child list = 5

the object ID in the child list = 6

In example 2, we specify how to create the desired object by specifying a subset of its child
objects (the objects from its child list). Note that when specifying the path, we stop at the
target object, and do not go down to the child list level. Because there is only one child list
for the target object, there is no ambiguity; we then just specify which child objects to use
from the implied child list. In this example, all references (including the child references)
were defined using object_ID.

1 0 . 5 . 5 O b j e c t S e l e c t i o n S e m a n t i c s

The semantics of selecting an object from a list will vary based on the kind of subunit being
controlled, the nature of the data relationships that are involved, and the details provided in
the object_selection_reference field. There are some general rules defined for all lists in the
AV/C model, and specific types of subunits may add further definitions.

April 15, 1998, 1998003 AV/C Digital Interface Command Set General Specification, Rev. 3.0

Copyright  1996-1998, 1394 Trade Association. All rights reserved. Page 81

1 0 . 5 . 6 T h e O B J E C T N U M B E R S E L E C T S t a t u s C o m m a n d

OBJECT NUMBER SELECT may also be used with a ctype of STATUS, in which case the
ons_selection_specifications of the currently selected information instances on the specified
source plug are returned. The format of the OBJECT NUMBER SELECT status command
is illustrated by the figure below:

The source_plug operand indicates the subunit plug number for which status is being
requested.

If the subunit is able to return a STABLE response to the OBJECT NUMBER SELECT
status command, the AV/C response frame has the format illustrated by the figure below:

The status field describes the current situation of the specified object(s). The meaning of this
field will be subunit-type-specific. For details, please refer to the appropriate subunit-type-
specific OBJECT NUMBER SELECT command description.

All other operands are as described for the control command.

Only objects which have an entry in the object list(s) can be returned. For some types of
subunits, it is possible to direct data to a source plug by means other than using the ONS
control command (for one example of this, please refer to the DIRECT SELECT
INFORMATION TYPE command, in the tuner subunit specification). In these cases,
information about this data will not be returned by the ONS status command. The
controller must use the appropriate mechanisms to retrieve status information about
selections made via those other commands.

In addition, OBJECT NUMBER SELECT with a ctype of NOTIFY is also used so that the
controller shall be notified when the output of the specified source plug has changed. If the
source plug has new data directed to it using some means other than the ONS command,
then a controller will not be notified. The CHANGED response notification from ONS will
only occur when the ONS command has been used to change the source plug, or when the
target must change the ONS selection(s) on the plug for internal reasons (for example, if the
data runs out). The controller must request notification for other changes to the source plug

msb lsb

opcode OBJECT NUMBER SELECT (0D16)

operand[0] source_plug
operand[1] FF16

msb lsb

opcode OBJECT NUMBER SELECT (0D16)

operand[0] source_plug

operand[1] status

operand[2] number_of_ons_selection_specifications (n)

operand[3]

: ons_selection_specification[0]

:

:

: :

:

: ons_selection_specification[n - 1]

:

:

AV/C Digital Interface Command Set General Specification, Rev. 3.0 April 15, 1998, 1998003

Page 82 Copyright  1996-1998, 1394 Trade Association. All rights reserved.

using the appropriate mechanisms. The format of the OBJECT NUMBER SELECT notify
command is illustrated by the figure below:

The format of associated INTERIM and CHANGED responses is the same as the OBJECT
NUMBER SELECT status response described above.

1 0 . 6 P O W E R c o m m a n d

The POWER control command is used to control the power status of the AV unit or one of its
subunits determined by the AV/C address that is contained in the AV/C frame. The format
of the POWER command is illustrated by Figure 10-1 below.

When the POWER command is issued with a ctype value of CONTROL, the power_state
field specifies the desired power state of the unit. Power on is encoded as 7016 and power off
as 6016.

Setting the power status of the AV unit to on or off shall cause the power of all of its
subunits to be set in the same way. Setting the power status of a subunit shall not affect
the power status of the AV unit or any of the other subunits.

The POWER command with a ctype value of STATUS may be used to determine the current
power state of the AV unit or one of its subunits. In this case, operand[0] is set to 7F16 when
the command is issued and is updated to the current power state when the STABLE
response is returned.

The POWER command may also be used as a notify command. The notify command has the
same syntax as the status command. A notification shall be returned by the target to the
controller that issued the notify command in case the power state of the addressed unit or
subunit changes. The notify response has the same format as the response frame.

1 0 . 7 R E S E R V E c o m m a n d

The RESERVE control command permits a controller to acquire or release exclusive control of
the AV unit or one of its subunits determined by the AV/C address that is contained in the
AV/C frame. The format of the command is illustrated by Figure 10-2 below.

msb lsb

opcode OBJECT NUMBER SELECT (0D16)

operand[0] source_plug
operand[1] FF16

msb lsb

opcode POWER (B216)

operand[0] power_state

 Figure 10-1 — POWER command format

msb lsb

opcode RESERVE (0116)

operand[0] priority

operand[1]

… text

operand[12]

April 15, 1998, 1998003 AV/C Digital Interface Command Set General Specification, Rev. 3.0

Copyright  1996-1998, 1394 Trade Association. All rights reserved. Page 83

 Figure 10-2 — RESERVE control command format

The priority field shall specify the relative priority associated with the command. Zero has
special meaning and indicates that no controller has reserved the AV (sub)unit. The other
values, between one and 0F16, indicate that the target holds a reservation for a controller. A
priority value of four is, by convention, the standard priority that controllers are expected to
use in the absence of other reasons for choosing a higher or lower priority.

The text field provides for up to 12 bytes of ASCII characters. If no text string is present, the
bytes are expected to have a value of FF16.

An AV (sub)unit accepts RESERVE control commands according to the following rules:

after a power-on reset or a command reset, the AV (sub)unit is in a free state and reports a priority
value of zero in response to any RESERVE inquiries (see the discussion of RESERVE when ctype has
a value of STATUS, below).

a) an AV (sub)unit that is in the free state may be reserved by any controller that issues a
RESERVE control command. The target shall internally record the priority at which the
reservation is made, the text string that accompanies the reservation and the 16-bit node ID of
the controller. An ACCEPTED response guarantees to the controller that the reservation has
succeeded.

NOTE: When a priority value is accepted by an AV (sub)unit and a reservation is established, the
stored value is transformed according to the following table.

Command priority Stored priority
0 — 1 priority

0216 — 0E16 priority & 0E16

0F16 priority
 This has the effect of rounding most odd priorities down to a smaller even value.

b) while an AV (sub)unit holds a reservation for a controller, it shall reject any control commands
other than RESERVE with a ctype of CONTROL that are issued by any other controller. The
16-bit node ID stored by the AV (sub)unit upon receipt of the RESERVE control command is
the basis for accepting or rejecting control commands for controllers.

c) if a RESERVE control command is received from the same controller that holds the
reservation, it shall be accepted. This permits the original controller to raise or lower the
priority associated with the reservation.

d) if a RESERVE control command is received from a different controller than that which made
the reservation, the AV (sub)unit shall reject the command unless the priority is greater than
the current reservation priority. In the case where the new priority is greater than the current
priority, the existing reservation is preempted and a reservation is established for the new
controller according to the procedures already described in b).

e) If a RESERVE control command is addressed to the AV unit but that AV unit contains a
subunit that already holds a reservation with an equal or higher priority, the RESERVE
control command shall return a REJECTED response.

f) If a RESERVE control command is addressed to the AV unit and that AV unit contains no
subunits that are already reserved with an equal or higher priority, then each existing
reservation of a subunit shall be preempted and a reservation of the AV unit is established for
the new controller according to the procedures already described in b).

g) Any control command that is addressed to a subunit within an AV unit that is reserved by a
different controller than the one which issued the control command, shall be rejected.

When an AV (sub)unit detects a Serial Bus reset, it shall reset its reservation priority to zero
(free) and set both the reservation node ID and the reservation text to values of all ones.
Then, until the reservation has been reestablished, or until a period of ten seconds has

AV/C Digital Interface Command Set General Specification, Rev. 3.0 April 15, 1998, 1998003

Page 84 Copyright  1996-1998, 1394 Trade Association. All rights reserved.

elapsed, it shall reject all commands with a ctype of CONTROL except for RESERVE
commands. This procedure permits the original holder of the reservation to reestablish the
reservation with its reassigned node ID after the bus reset.

NOTE: Controllers shall not issue RESERVE control commands within ten seconds of a bus reset
unless they had established a reservation with the target AV (sub)unit prior to the bus reset. Because
the node ID of the AV unit may have changed after the bus reset, a controller that wishes to reestablish
(sub)unit reservations is expected to examine the unique identifier, EUI-64, in configuration ROM to
locate the AV (sub)unit previously reserved.

Because of this restriction, the target can assume that a RESERVE command received
within 10 seconds of a bus reset is legitimate, and shall therefore accept the reservation.
Any controller may request the current reservation status of an AV (sub)unit by issuing a
RESERVE command with a ctype field of STATUS, in the format shown in Figure 10-3.

 Figure 10-3 — RESERVE status command format

If a response frame is returned that indicates STABLE, operand[0] holds the current
reservation priority and operand[1] through operand[12] hold the text string stored at the
time the reservation was established. There is no way to determine the identity of the
controller that holds the reservation.

Controllers that wish to be advised of a possible change of status of their own reservations,
for example preemption by another controller by means of a higher priority reservation,
should issue a RESERVE command in the format shown in Figure 10-3 but with a ctype
value of NOTIFY. If a new reservation is established, the original reservation holder is
notified by an AV/C response frame with CHANGED status and operand values that reflect
the new reservation.

NOTE: Any new reservation results in CHANGED status, even a reservation made by the same
controller that already holds a reservation. A response frame is returned to any outstanding notify
command in all of these cases.

1 0 . 8 P L U G I N F O c o m m a n d

The PLUG INFO status command is used to inquire about the number of plugs on the AV
unit or one of its subunits determined by the AV/C address contained in the AV/C frame.
The format of the PLUG INFO status command is illustrated by Figure 10-4 below.

 Figure 10-4 — PLUG INFO status command format

msb lsb

opcode RESERVE (0116)

operand[0]

… FF16

operand[12]

msb lsb

opcode PLUG INFO (0216)

operand[0] 0016

operand[1]

operand[3] FF16

operand[4]

April 15, 1998, 1998003 AV/C Digital Interface Command Set General Specification, Rev. 3.0

Copyright  1996-1998, 1394 Trade Association. All rights reserved. Page 85

If the PLUG INFO status command was addressed to an AV subunit, the format of the
response frame is shown in Figure 10-5 below.

For the AV subunit response frame, operand[1] and operand[2] shall indicate the number of
destination and source plugs of that AV subunit, and operand[3] and operand[4] shall have
the value FF16.

If the PLUG INFO status command was addressed to an AV unit, the response frame
returned is illustrated by Figure 10-6 below.

 Figure 10-6 — PLUG INFO response format from an AV unit

If the PLUG INFO status command is addressed to the AV unit, operand[1] and operand[2]
shall indicate the number of Serial Bus input and output plugs, respectively, while
operand[3] and operand[4] shall indicate the number of external input and output plugs,
respectively.

1 0 . 9 V E N D O R - D E P E N D E N T c o m m a n d s

The VENDOR-DEPENDENT command permits module vendors to specify their own set of
commands and responses for AV units or subunits determined by the AV/C address that is
contained in the AV/C frame. The structure of the command is illustrated by Figure 10-7
below.

 Figure 10-7 — VENDOR-DEPENDENT command format

msb lsb

opcode PLUG INFO (0216)

operand[0] 0016

operand[1] destination_plugs

operand[2] source_plugs

operand[3] FF16

operand[4] FF16

Figure 10-5 — PLUG INFO status response format from an AV subunit

msb lsb

opcode PLUG INFO (0216)

operand[0] 0016

operand[1] Serial_Bus_input_plugs

operand[2] Serial_Bus_output_plugs

operand[3] External_input_plugs

operand[4] External_output_plugs

msb lsb

opcode VENDOR-DEPENDENT (0016)

operand[0] (most significant byte)

operand[1] company_ID

operand[2] (least significant byte)

operand[3]

… vendor_dependent_data

operand[n]

AV/C Digital Interface Command Set General Specification, Rev. 3.0 April 15, 1998, 1998003

Page 86 Copyright  1996-1998, 1394 Trade Association. All rights reserved.

The company_ID field shall contain the 24-bit unique ID obtained from the IEEE
Registration Authority Committee (RAC). It is expected that the value of company_ID
provided in the operands of vendor-dependent commands be the same as the vendor ID in
the Node Unique ID leaf in configuration ROM of the AV unit to which the command is
addressed. The most significant part of the company_ID is stored in operand[0] and the
least significant part in operand[2].

The format and meaning of the vendor_dependent_data field are specified by the vendor
identified by company_ID.

Although the behavior of vendor-dependent commands is beyond the scope of this
specification, it is recommended that vendor-dependent be defined in the same five
command types, CONTROL, SPECIFIC INQUIRY, STATUS, NOTIFY and GENERAL
INQUIRY, specified by the ctype field described in 5.3.1.

April 15, 1998, 1998003 AV/C Digital Interface Command Set General Specification, Rev. 3.0

Copyright  1996-1998, 1394 Trade Association. All rights reserved. Page 87

A . AV / C c o m m a n d s i n n u m e r i c a l o r d e r (n o r m a t i v e)

The table below lists all the AV/C commands, in numerical order by opcode. Commands that
pertain to subunits in addition to units are indicated by an X in the Subunit commands
column. The legend for the subunit types follows the table.

In the preceding table, an asterisk in the support level column indicates that the command
operands or the type of subunit determine whether the command is mandatory (M),
recommended (R), optional (O), or vendor-dependent (V).

Unit
command

Subunit
commands

Support level
(by ctype)

Value Opcode C S N

0016 VENDOR-DEPENDENT X X V V V

0116 RESERVE X X O O R

0216 PLUG INFO X X – O –

0816 OPEN DESCRIPTOR X X O O O

0916 READ DESCRIPTOR X X O – –

0A16 WRITE DESCRIPTOR X X O O –

0B16 SEARCH DESCRIPTOR X X O – –

0D16 OBJECT NUMBER SELECT X X O O O

1016 DIGITAL OUTPUT X O O –

1116 DIGITAL INPUT X O O –

1216 CHANNEL USAGE X – R R

1816 OUTPUT PLUG SIGNAL FORMAT X O R O

1916 INPUT PLUG SIGNAL FORMAT X O R O

2016 CONNECT AV X O O O

2116 DISCONNECT AV X O – –

2216 CONNECTIONS X – O –

2416 CONNECT X O O R

2516 DISCONNECT X O – –

3016 UNIT INFO X – M –

3116 SUBUNIT INFO X – M –

B216 POWER X X O O R

AV/C Digital Interface Command Set General Specification, Rev. 3.0 April 15, 1998, 1998003

Page 88 Copyright  1996-1998, 1394 Trade Association. All rights reserved.

B . U n r e s o l v e d i s s u e s (i n f o r m a t i v e)

This annex describes areas of the AV/C Digital Interface Command Set that are not yet fully
resolved or subject to ambiguous interpretations by implementors.

It is recommended that this informative annex remain a part of the specification until the
1394 Trade Association is able to resolve the ambiguities.

B.1 Command execution model

There is no well articulated model for how commands are to be executed, to what degree
command queuing is possible, whether or not response frames are required to be returned in
the same order as the corresponding commands were initially issued, how (precisely)
response frames are to be correlated with their command frames and so on.

The document editors have been unable to describe consistent behavior for AV devices in
this area. The document editors are concerned that these ambiguities will permit varying
implementations of both peripherals and host software such that interoperability is
compromised.

The matter of response frame identification is troublesome because there is no way to
uniquely guarantee that a particular response frame can be matched with its command
frame.

B.2 Remote bus resets

In section 6, the behavior of an AV device when it detects a Serial Bus reset on the local bus
is described. The AV device shall discard any in progress transactions without the return of
a response frame. This is intended to prevent the return of a response frame to the incorrect
controller, since the 6-bit physical ID of the controller may have changed as the result of a
bus reset.

The same considerations apply if the controller is located on a remote bus that experiences a
bus reset: the physical ID’s on that bus may change. This in turn implies that an AV device,
if it is to be able to be controlled by a remote controller must have some way to detect the
occurrence of a bus reset on the remote bus, in order to be able to discard an in progress
transactions.

B.3 Notification support

It is desirable for a controller to have the opportunity to receive notification for any change of
state in a target. This implies that all commands which cause state changes need to have
notification specifications. There are some commands currently defined without notification
support as an option, such as DIGITAL INPUT, DIGITAL OUTPUT, and a few others.
Future work should focus on defining them.

B.4 Identifying the Specific Type of Subunit

In the situation where given subunit type has variations, it would be useful for a controller
to be able to distinguish what variant it is talking to. For example, the VCR subunit type
now has DVCR and D-VHS variants (or subtypes?). We need a method of classifying this
new relationship model, and for providing this information to controllers.

