User Tools

Site Tools


playground:playground

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
playground:playground [2008/09/18 10:12] wikiadminplayground:playground [2008/09/18 10:21] (current) wikiadmin
Line 8: Line 8:
 [[Änderungen und Bemerkungenk]] [[Änderungen und Bemerkungenk]]
  
- + <texit info> 
 +author=MySelf 
 +title=MyTitle 
 +</texit> 
  
 +^MIK | MIKROSKOPIE|  
  
 =====  Einleitung ===== =====  Einleitung =====
Line 64: Line 69:
  
  
-Beim menschlichen Auge ist die Bildweite durch die Abmessung des Augenkörpers zu ca. 22 mm vorgegeben und die Gegenstandsweite liegt durch die Entfernung des Gegenstands von der Augenlinse fest. Um ein scharfes Bild des Gegenstands auf der Retina zu erhalten, wird die Brennweite der Augenlinse so verändert, dass die obige Abbildungsgleichung erfüllt ist. Dieser Vorgang heißt Akkommodation und er geschieht durch die Veränderung der Linsenkrümmung durch die Ziliarmuskeln. Wird der zu betrachtende Gegenstand näher an das Auge herangeführt, so wird auch sein Bild auf der Retina größer (Abb. 1). Die minimale, noch zu einer Abbildung führende Entfernung vom Auge beträgt circa 5 cm. Für noch kleinere Entfernungen reicht das Krümmungsvermögen der Augenlinse nicht mehr zur Erzeugung eines scharfen Bildes auf der Retina aus. Die Betrachtung bei derart kleinen Entfernungen ist allerdings sehr anstrengend; ermüdungsfrei können von den meisten Augen Gegenstände in einer Entfernung von etwa 25 cm betrachtet werden. Diese Entfernung be-zeichnet man als deutliche Sehweite s0.+Beim menschlichen Auge ist die Bildweite durch die Abmessung des Augenkörpers zu ca. 22 mm vorgegeben und die Gegenstandsweite liegt durch die Entfernung des Gegenstands von der Augenlinse fest. Um ein scharfes Bild des Gegenstands auf der Retina zu erhalten, wird die Brennweite der Augenlinse so verändert, dass die obige Abbildungsgleichung erfüllt ist. Dieser Vorgang heißt Akkommodation und er geschieht durch die Veränderung der Linsenkrümmung durch die Ziliarmuskeln. Wird der zu betrachtende Gegenstand näher an das Auge herangeführt, so wird auch sein Bild auf der Retina größer (Abb. 1). Die minimale, noch zu einer Abbildung führende Entfernung vom Auge beträgt circa 5 cm. Für noch kleinere Entfernungen reicht das Krümmungsvermögen der Augenlinse nicht mehr zur Erzeugung eines scharfen Bildes auf der Retina aus. Die Betrachtung bei derart kleinen Entfernungen ist allerdings sehr anstrengend; ermüdungsfrei können von den meisten Augen Gegenstände in einer Entfernung von etwa 25 cm betrachtet werden. Diese Entfernung bezeichnet man als deutliche Sehweite s0.
        
    
Line 99: Line 104:
 Die Gesamtvergrößerung des Mikroskops lässt sich wie folgt berechnen: Die Gesamtvergrößerung des Mikroskops lässt sich wie folgt berechnen:
  
-<latex>+<m>
  (5) .  (5) .
-<\latex>+/m>
  
 Das zweite Gleichheitszeichen rechtfertigt sich aus dem fein gestrichelten Dreieck in Abb. 3 und das letzte aus dem grob gestrichelten Strahlensatz. Gleichzeitig lässt sich ablesen, dass die Gesamtvergrößerung des Mikroskops das Produkt von Objektiv- und Okularvergrößerung  ist: Das zweite Gleichheitszeichen rechtfertigt sich aus dem fein gestrichelten Dreieck in Abb. 3 und das letzte aus dem grob gestrichelten Strahlensatz. Gleichzeitig lässt sich ablesen, dass die Gesamtvergrößerung des Mikroskops das Produkt von Objektiv- und Okularvergrößerung  ist:
  
-<latex>+<m>
  (6) ,  (6) ,
-<\latex>+</m>
  
 wobei <m>Gamma_1</m>  durch den Abbildungsmaßstab B / G und <m>Gamma_2</m> durch die Lupenvergrößerung s_0 / f2 gegeben sind. Beide Angaben sind bei handelsüblichen Linsensystemen auf den jeweiligen Fassungen eingraviert. In der Praxis werden Objektive mit Vergrößerungen von 1 (Übersichtsbetrachtungen des Präparats) bis 100 (i. A. mit Öl-Immersion, s.u.) und Okulare mit 5- bis 25-facher Vergrößerung eingesetzt. wobei <m>Gamma_1</m>  durch den Abbildungsmaßstab B / G und <m>Gamma_2</m> durch die Lupenvergrößerung s_0 / f2 gegeben sind. Beide Angaben sind bei handelsüblichen Linsensystemen auf den jeweiligen Fassungen eingraviert. In der Praxis werden Objektive mit Vergrößerungen von 1 (Übersichtsbetrachtungen des Präparats) bis 100 (i. A. mit Öl-Immersion, s.u.) und Okulare mit 5- bis 25-facher Vergrößerung eingesetzt.
Line 117: Line 122:
  
  
-Nach den erläuterten Regeln der bislang betrachteten geometrischen Optik wäre dem Auflösungsvermögen eines Mikroskops keine Grenze gesetzt. Allerdings lassen sich die Regeln dieser Strahlenoptik nicht mehr kritiklos bei der Bildkonstruktion von Objekten verwenden, deren Größe im Bereich der Wellenlänge des verwendeten Lichtes liegt. Bei derart kleinen Objekten können bei der Betrachtung der Strahlengänge die beiden für Wellenausbreitung typischen Erscheinungen von Beugung und Interferenz nicht mehr vernachlässigt werden. Beleuchtet man beispielsweise einen Doppel-spalt mit Spaltabstand d = 500 nm mit parallelem Licht einer einzigen Wellenlänge <m>lambda</m> und fängt das Licht hinter dem Spalt auf einem Schirm auf, so sieht man das sogenannte Beugungsbild des Spaltes: Der zentrale Lichtstreifen als “Beugungsmaximum nullter Ordnung” der Intensität I0 ist von parallelen, rasch dunkler werdenden zusätzlichen Lichtstreifen, den “Beugungsmaxima <m>pm</m>m Ordnung“ der Intensitäten I<m>pm<\m>m begleitet, wobei m natürliche Zahlen sind. Diese hellen Streifen sind durch dunkle Streifen getrennt. Die Winkel <m>Theta</m>m zwischen diesen gebeugten Lichtstrahlen und der Einfallsrichtung hängt von der Spaltbreite und der Wellenlänge des verwendeten (monochromatischen) Lichtes ab:+Nach den erläuterten Regeln der bislang betrachteten geometrischen Optik wäre dem Auflösungsvermögen eines Mikroskops keine Grenze gesetzt. Allerdings lassen sich die Regeln dieser Strahlenoptik nicht mehr kritiklos bei der Bildkonstruktion von Objekten verwenden, deren Größe im Bereich der Wellenlänge des verwendeten Lichtes liegt. Bei derart kleinen Objekten können bei der Betrachtung der Strahlengänge die beiden für Wellenausbreitung typischen Erscheinungen von Beugung und Interferenz nicht mehr vernachlässigt werden. Beleuchtet man beispielsweise einen Doppel-spalt mit Spaltabstand d = 500 nm mit parallelem Licht einer einzigen Wellenlänge <m>lambda</m> und fängt das Licht hinter dem Spalt auf einem Schirm auf, so sieht man das sogenannte Beugungsbild des Spaltes: Der zentrale Lichtstreifen als “Beugungsmaximum nullter Ordnung” der Intensität I0 ist von parallelen, rasch dunkler werdenden zusätzlichen Lichtstreifen, den “Beugungsmaxima <m>pm</m>m Ordnung“ der Intensitäten I<m>pm</m>m begleitet, wobei m natürliche Zahlen sind. Diese hellen Streifen sind durch dunkle Streifen getrennt. Die Winkel <m>Theta</m>m zwischen diesen gebeugten Lichtstrahlen und der Einfallsrichtung hängt von der Spaltbreite und der Wellenlänge des verwendeten (monochromatischen) Lichtes ab:
  
 <m> <m>
 (7) . (7) .
-<\m>+</m>
  
-Diese Gleichung lässt sich anhand des Huygens’schen Prinzips (s. Abb. 4) verstehen, nach dem jeder Punkt einer Wellenfront Ausgangspunkt einer neuen Elementarwelle (Kugelwelle) ist, welche in der Folge interferieren und sich überlagern additiv (Superpositionsprinzip). Trifft ein Wellenberg (positive Amplitude) auf den Wellenberg einer anderen Elementarwelle, verstärken sich die Intensitäten. Trifft ein Wellenberg auf ein Wellental (negative Amplitude), löschen sich die Wellen aus. Die Bedingung für das Auftreten eines Intensitätsmaximums auf dem Schirm ist also, dass der Gangunterschied der Strahlen aus den beiden Spalten, Δs = d*sin<m>Theta</m>, gleich einem Vielfachen der Wellenlänge sein muss. Daraus folgt Gleichung (7).+Diese Gleichung lässt sich anhand des Huygens’schen Prinzips (s. Abb. 4) verstehen, nach dem jeder Punkt einer Wellenfront Ausgangspunkt einer neuen Elementarwelle (Kugelwelle) ist, welche in der Folge interferieren und sich überlagern additiv (Superpositionsprinzip). Trifft ein Wellenberg (positive Amplitude) auf den Wellenberg einer anderen Elementarwelle, verstärken sich die Intensitäten. Trifft ein Wellenberg auf ein Wellental (negative Amplitude), löschen sich die Wellen aus. Die Bedingung für das Auftreten eines Intensitätsmaximums auf dem Schirm ist also, dass der Gangunterschied der Strahlen aus den beiden Spalten, <m>Delta</m>s = d*sin<m>Theta</m>, gleich einem Vielfachen der Wellenlänge sein muss. Daraus folgt Gleichung (7).
    
 //Abb. 4 Zum Huygens'schen Prinzip und zur Berechnung des Gangunterschieds interferierender Strahlen.// //Abb. 4 Zum Huygens'schen Prinzip und zur Berechnung des Gangunterschieds interferierender Strahlen.//
Line 200: Line 205:
  
 === Zu Aufgabe 2 (Messmikroskop) === === Zu Aufgabe 2 (Messmikroskop) ===
 +
 +
  
  
Line 210: Line 217:
  
  --- //[[praktikum@physik.fu-berlin.de|Administrator]] 2008/09/18 12:08//  --- //[[praktikum@physik.fu-berlin.de|Administrator]] 2008/09/18 12:08//
 +
playground/playground.1221732773.txt.gz · Last modified: 2008/09/18 10:12 by wikiadmin

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki