User Tools

Site Tools


polarisation

This is an old revision of the document!


POLARIMETRIE

In Chemie und Kristallografie, Biowissenschaften und Medizin und in einer Vielzahl technischer Bereiche wird in Messtechnik und Anwendungen von den Eigenschaften und Erscheinungen polarisierten Lichtes Gebrauch gemacht. Polarimetrische Konzentrationsbestimmungen optisch aktiver Substanzen in Lösungen finden in Chemie, Biologie und Medizin verbreitet Anwendung. Als Beispiele sind die Blutzuckerbestimmung im Harn, die Konzentrationsüberwachung bei der Zuckerproduktion (Saccharimetrie) oder reaktionskinetische Messungen in der Chemie zu nennen. Auch viele Aminosäuren zeigen optische Aktivität und können polarimetrisch nachgewiesen werden. Die Polarisationsmikroskopie ist eine wichtige Methode zur Aufdeckung von Strukturen in transparenten Medien ohne Helligkeits- oder Farbunterschiede. Das in der Atmosphäre gestreute Sonnenlicht (Himmelsblau) ist teilweise polarisiert, am stärksten senkrecht zur Richtung der Sonnenstrahlen. Es wurde nachgewiesen, dass Bienen mit ihren Facettenaugen die Polarisation des Himmelslichtes erkennen und zur Orientierung verwenden. Der vorliegende Versuch soll eine kurze Einführung in die phänomenologischen Grundlagen der Polarisation geben und praktische Übung der polarimetrischen Konzentrationsbestimmung vermitteln.
Aufgaben
1.(Spezifische Drehwinkel): Bestimmung der spezifischen Drehwinkel [α] von D(-)-Fructose, D(+)-Glucose und Saccharose.
2.(Mischprobe): Quantitative Analyse eines Zuckergemisches.
Physikalische Grundlagen
==Polarisation==
Man unterscheidet zwei Grundformen von Wellen: longitudinale und transversale Wellen (Längs- und Querwellen). Bei longitudinalen Wellen haben Auslenkung und Ausbreitung der Welle die gleiche Richtung (Abb. 1). Durch die Welle wird nur eine Raumrichtung, nämlich die Ausbreitungsrichtung, ausgezeichnet. Bei transversalen Wellen stehen Auslenkung und Ausbreitungsrichtung senkrecht aufeinander. Durch beide Richtungen wird eine Ebene ausgezeichnet, die als Schwingungsebene der Welle bezeichnet wird.
Abb1
Polarisation tritt nur bei Transversalwellen auf. Diese setzen sich im Allgemeinen aus einer Vielzahl von elementaren Wellenzügen zusammen, deren einzelne Schwingungsebenen zufällige Richtungen besitzen. Gibt es jedoch eine bevorzugte Schwingungsebene, so spricht man von einer polarisierten Welle. Die bevorzugte Ebene heißt Polarisationsebene, die bevorzugte Schwingungsrichtung senkrecht zur Ausbreitungsrichtung Polarisationsrichtung. Bei der in Abb.1 skizzierten Transversalwelle ist die Polarisationsrichtung die Richtung nach oben und unten und die Polarisationsebene die Ebene des Papiers selbst.
Den Grad der Ausrichtung einer Welle bezeichnet man als Polarisationsgrad (haben anschaulich gesprochen z.B. von 100 Wellenzügen 60 die gleiche Schwingungsebene, und sind die anderen 40 zufällig verteilt, so spricht man von einem Polarisationsgrad von 60 %).
Aus den Polarisationserscheinungen folgt, dass Licht eine transversale Welle darstellt. Licht ist eine elektromagnetische Welle, wobei ein elektrisches (E-) Feld und ein magnetisches (B-) Feld die Schwingungsgrößen sind. Bei Licht bezeichnet man Richtung und Größe des E-Feldes als Schwingungsrichtung.

polarisation.1242140495.txt.gz · Last modified: 2009/05/12 15:01 by oelke

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki