public:projects:pathintegrals
Differences
This shows you the differences between two versions of the page.
Both sides previous revisionPrevious revisionNext revision | Previous revision | ||
public:projects:pathintegrals [2012/06/14 12:31] – wikiadmin | public:projects:pathintegrals [2012/06/16 15:25] (current) – oschuett | ||
---|---|---|---|
Line 1: | Line 1: | ||
- | ====== Ab-initio path integral molecular dynamics and momentum densities ====== | ||
{{ : | {{ : | ||
Line 11: | Line 10: | ||
< | < | ||
- | Z = \text{Tr} \left[ \left(e^{-\frac{\beta}{P}\hat H}\right)^P\right] = \int d^{3N}R \ \ \langle\mathbf{R}|e^{-\frac{\beta}{P} \hat H} \dots e^{-\frac{\beta}{P} \hat H} |\mathbf{R} \rangle \ \ \text{with}\ | + | Z = \text{Tr} \left[ \left(e^{-\frac{\beta}{P}\hat H}\right)^P\right] = \int d^{3N}R \ \ \langle\mathbf{R}|e^{-\frac{\beta}{P} \hat H} \dots e^{-\frac{\beta}{P} \hat H} |\mathbf{R} \rangle \ \ \text{with}\ |
\end{align*} $ </ | \end{align*} $ </ | ||
- | The new aspect is that with a modification of the conventional path integral scheme, it is possible to express not only quantities in real space (**R**-space), | + | The new aspect is that with a modification of the conventional path integral scheme, it is possible to express not only quantities in real space (**R**-space), |
< | < | ||
n(\mathbf{k}) = & \int d^3d_2 \dots d^3k_N\ | \Psi(\mathbf{k_1}=\mathbf{k}, | n(\mathbf{k}) = & \int d^3d_2 \dots d^3k_N\ | \Psi(\mathbf{k_1}=\mathbf{k}, | ||
- | = & \frac{1}{(2\pi)^3} \int d^3 R_1\, d^3R' | + | = & \frac{1}{(2\pi)^3} \int d^3 R_1\, d^3R' |
\end{align*}$ </ | \end{align*}$ </ | ||
public/projects/pathintegrals.1339677072.txt.gz · Last modified: 2012/06/14 12:31 by wikiadmin